MICROFACIES AND APPLIED ASPECTS EXEMPLIFIED BY TERTIARY LIMESTONES (AZKAND LIMESTONE FORMATION) IN KIRKUK AREA PART 1

D.Y. AL-RAWI
COLLEGE OF SCIENCE, KUFA UNIVERSITY, NEJEF

ALI ASHOOR ABID
DEPARTMENT OF GEOLOGY, COLLEGE OF SCIENCE, BAGHDAD UNIVERSITY

Received: 16/8/2000 Accepted: 7/3/2002

ABSTRACT

Facies concept is served as a basis to reconstruct thematically the ancient depositional environment of Azkand Limestone Formation.

Numerous limestone types of this formation had been systematically studied in detail, due to the various types of the microfacies.

The present paper shows that the sediments of the Azkand Formation were deposited in three different environments namely a continental slope, fore-reef shoal and finally coral-reef; the reef type is of hermatypic scleractinian corals.

INTRODUCTION

The paper focuses on the study of microfacies evolution of the Azkand limestone in Khabaz Oilfield, 12 kilometers SW of Kirkuk district, Northern Iraq.
The diversity of the sediments represents a broad spectrum of carbonate rocks. Therefore valuable data is gained to analyze the depositional basin and its pattern during the Oligocene. In this case, the basin configuration reflects tectonic setting conditioned partly by its tectonic evolution and is lying in the flat area south of Kirkuk, composed mainly of Tertiary sediments.

The studied samples are from the following boreholes (Figure 1):

- Borehole Kz.3 (Long. 44° 17' 50", Lat. 35° 20' 01"
- Borehole Kz.4 (Long. 44° 07' 20", Lat. 35° 31' 38"
- Borehole Kz.9 (Long. 44° 09' 20", Lat. 35° 03' 05"

Furthermore, figures 2, 3 and 4 represent lithological columns in three boreholes.

MICROFACIES

The concept of the microfacies is applied to deduce the history of the basin evolution. The laterally and vertically facies variation (Figure 5) is of great importance by reconstructing the ancient depositional basins. Dunham classification (1962) (1), which is modified by Embry and Klovain (1971)(2) had been applied, because the boundstone microfacies is subdivided more in detail.
Figure 1: Location map of the studied boreholes
D.Y. AL-RAWI & ALI ASHOOR ABID

Boundstone

It is built up mainly by coral and algal skeletons. Such rock is considered to be autochthonous (2) and subdivided into three types:

Framestone

It is built up mainly by skeletons of hexacorallia; it occurs alternately with reef and forereef facies and identical with SMF 7/FZ 5 (3,4) and with the biofacies 6 (5). (plate I, figure 1).

Bafflestone

It occurred locally in a quiet water environment. The micrite is deposited between the intergrown branches of coral. This facies occurs in the upper part of the borehole Kz.3 and is identical with SMF 7/FZ 5 (3,4). (plate I, figure 2).

Bindstone

It is composed mainly of crustose coralline algae such as Lithophyllum sp. and Lithothamnium sp. The micrite represents the binding material. The occurrence of the facies is not common and randomly distributed in the three boreholes. The facies is identical with SMF 7/FZ 5 (plate I, figure 3).

Grainstone

It is mainly grain supported fabric and cement is often sparitic. The following submicrofacies had been identified:

Miogypsinaoides Grainstone

It is composed mainly of large benthonic foraminifera namely Miogypsinaoides complanata (plate I, figure 5). This species constitutes more than 80% of the rock, while the bioclasts are represented by well-sorted coral clasts (0-5%), oyster shell debris (2-3%) and lastly
D.Y.AL-RAWI & ALI ASHOOR ABID

foraminiferal clasts (1-2 %). This facie is widely distributed in the Kz.3 and Kz.9, which is identical with SMF 5/FZ 4.

Sartorio and Venturini, 1988(6) consider this facie to be algal-reef shoal, while Buxton and Pedley, 1989 suspect a fore coral-algal reef environment due to the frequent occurrences of Miogypsinoidea sp. The facies is identical with biofacies 7(5).

Foraminiferal Grainstone

It forms mainly of large benthonic foraminifera, which is indicative for fore coral reef. Various genera had been identified namely Miogypsinoidea sp., Lepidocyclina sp., Heterostegina sp., Spiroctypeus sp. and Kotaia sp. (plate II, figures 4,5).

The identified algae are: Subterranniphylhum thomasi, Lithothamnium sp. and Lithophyllum sp. (plate III, figures 6,7,8).

A lack of the Miogypsinoidea and predominance of Lepidocyclina is recorded in Kz. 4 (plate IV, figure 6). However, the depositional environment is similar to the Miogypsinoidea grainstone namely a coral-algal reef environment.

Packstone

The main characteristics are the large benthonic foraminifera and their clasts, corals and algae are not rare. The various types of submicrofacies of the packstone are indicative for the coral-fore reef environment and are as follows:
Foraminiferal Packstone

It is composed mainly of large benthonic foraminifera such as Miogypsinoides complanata, Lepidocyclina (Nephrolepidina) morgani (plate II, figure 8) and Heterostegina sp.

The bioclasts are mainly of corals, echinoids and oyster shells. The microfacies is widely distributed within Azkand Formation and occurred alternatively with fore-reef shoal facies. This facies is identical with SMF 5/FZ 4 (3,4) and biofacies 7 (5).

Bioclastic Foraminiferal Packstone

It is composed mainly of bioclasts of foraminiferal and oyster shell fragments. The intraclasts are limestone particles which constitute 2-3% of the whole rock. The destruction of the shells is due to the high turbulence of the water.

This facies is restricted to the middle part of the Azkand Formation in the Kz.3, Kz.4 and Kz.9, and identical with SMF 5/FZ 4 and biofacies 7 which represents a coral fore reef environment (plate V, figures 3, 4, 5). Furthermore, this facies represents a transitional one between the fore reef and shoal facies.

Mixed Foraminiferal Packstone

It is characterized by the occurrence of foraminiferal assemblage of fore and back reef type, due to the most probably restricted extension of the reef-proper. The following particles had been differentiated: coral debris 10-15% Lepidocyclina sp. 8-10% and Heterostegina sp. 5-10%.
D.Y. AL-RAWI & ALI ASHOOR ABID

This facies refers to a transgressive phase with more transitional characters. The fossil assemblage is not common and reveals a great diversity (plate V, figures 6,7). The facies is identical with SMF 5/FZ 4 and biofacies 5,6 which represent coral-algal reef environment.

Coral Floatstone

The bioclasts are mainly coral rubbles (15-25 %), resulted by destruction and transportation from the coral reefs; the size of the rubble is more than 2 cm. (plate V, figure 8).

The following forms of foraminifera had been identified:

Miochapsoides complanata, Rotalia vienneti and *Heterostegina* sp.

This facies is identical with SMF 5/FZ 4 and represents reef flank (fore reef) environment.

Wackestone

The present study shows that this microfacies is restricted to the fore reef environment and presents a transitional one between the fore reef and basinal facies. A series of submicrofacies had been identified namely:

Lepidocyclina Wackestone

It is characterized by the occurrence of *Lepidocyclina* (*Nephrolepidina*) *morgani* forming 25-30% of the whole rock (plate II, figure 8; plate VI, figure 1). This species is widely distributed in Kz.3 and Kz.4. The facies is identical with SMF 4/FZ 4 which represents a
fore reef environment, while a similar facies is described from a shoal environment (marine upslope) (7).

A similar facies with planktonic foraminifera had been described by Hallock and Glenn (1985, 1986) (8, 9), which is deposited in a slope and the toe-slope environment under the wave-base. While the present study shows the lack of planktonic forams, which is an argument that this facies is deposited in an up-slope and not in the toe-slope; furthermore this facies is identical with the large orbitoid facies 7 at the fore coral-algal reef environment.

Foraminiferal Wackestone

It is formed mainly of planktonic foraminifera (20-25%), in addition to the forms of benthonic forams namely Miogypsinoideas complanata, Operculina complanata, Lepidocyclina sp. and Lenticulina sp. (plate VI, figure 2, 7); the bioclasts are mainly fragments of benthonic forams. The facies occurred in the lower part of the Askand Formation in Kz.3.

The hand specimen reveals bioturbated structures, where the burrows are filled with Lepidocyclina (Eulepidina) dilatata and Operculina complanata (plate VI, figure 8), some chambers of the planktonic foraminifera are filled with anhydrite (plate VI, figure 5), which is indicative for a very late diagenesis.

This facies is identical with SMF 3/FZ 3 which represents a deep shelf margin and transitional facies from fore reef shoal towards basinal facies. A similar facies is interpreted by Sartorio and Venturini, 1988 to be a fore slope shoal, where a mixture of benthonic and planktonic foraminifera occurs.
D.Y. AL-RAWI & ALI ASHOOR ABID

Furthermore, this facies is similar to the biofacies 7,8 where the same mixture is dominant (5).

The present paper reveals similar submicrofacies namely foraminiferal-bioclastic wackestone-packstone which is composed mainly of bioclasts. This facies occurs in the lower part of Azkand Formation in Kz.3 and may represent a transitional one between the biofacies 7 and 8. On the other hand the depositional basin was shallower than the foraminiferal wackestone due to the few occurrence of planktonic foraminifera (plate VII, figures 1-5).
Figure 2: Lithological column in borehole KM 3
Figure 3: Lithological column in borehole Kz.4
Figure 4: Lithological column in borehole Kz.9
Figure 5: Facies diagram of Azkend Limestone Formation in the studied boreholes.
REFERENCES

77
EXPLANATION OF PLATES

Plate I

Figure 1: Coral Framestone. Azkand Formation; Kz, 4, depth 2309m; X32
Figure 2: Bafflestone. Azkand Formation; Kz, 9, depth 2247m; X32
Figure 3: Bindstone. Azkand Formation; Kz, 9, depth 2249m; X32
Figure 4: Miogypsinoidea Grainstone. Azkand Formation; Kz, 3, depth 2316m; X32
Figure 5: Miogypsinoidea complanata (Schlumberger) to show the eccentric position of embryonic-chamber. Azkand Formation; Kz, 9, depth 2273m; X32
Figure 6: Another section of Miogypsinoidea complanata (Schlumberger). Azkand Formation; Kz, 9, depth 2274m; X32
Figure 7: Well-rounded fragment of coral. Azkand Formation; Kz, 4, depth 2313m; X32
Figure 8: Fragment of mollusc shell affected by mechanical compaction. Azkand Formation; Kz, 9, depth 2241; X32

Plate II

Figure 1: Heterostegina assilinoides Blankenhorn. Azkand Formation; Kz, 3, depth 2334m; X32
Figure 2: Heterostegina assilinoides Blankenhorn. Azkand Formation; Kz, 9, depth 2269m; X32
Figure 3: Echinoid spine; note the blocky cement inside it. Azkand Formation; Kz, 4, depth 2294m; X63
D.Y. AL-RAWI & ALI ASHOOR ABID

Figure 4: Foraminiferal Grainstone. Azkand Formation; Kz.3, depth 2333m; X32

Figure 5: Foraminiferal Grainstone. Azkand Formation; Kz.4, depth 2302m; X10

Figures 6-7: Rotalia viennoti Greig. Azkand Formation; Kz.4; X32; 6- depth 2311m 7- depth 2302m

Figure 8: Lepidocyclina (Nephrolepidina) morgani Lemoine and Douville. Azkand Formation; Kz.3, depth 2323m; X32

Plate III

Figure 1: Heterostegina antillae Cushman. Azkand Formation; Kz.3, depth 2323m; X63

Figures 2-4: Spirocheyes sp. Azkand Formation; X32; 2- Kz.9, depth 2352m 3-Kz.4, depth 2314m 4-Kz.9, depth 2239m

Figure 5: Amphistegina sp. Azkand Formation; Kz.9, depth 2267m; X32

Figure 6: Lithophyllum sp. Azkand Formation; Kz.9, depth 2229m; X32

Figure 7: SubtErraniphyllum thomasi Elliott. Azkand Formation: Kz.9, depth 2229m; X32

Figure 8: Lithothamnium sp. Azkand Formation; Kz.9, depth 2233m; X32

Plate IV

Figure 1: Problematic algae. Azkand Formation; Kz.4, depth 2303m; X32

Figure 2: Tubucellaria sp. (Bryozoa). Azkand Formation; Kz.3, depth 2337m; X32
D.Y. AL-RAWI & ALI ASHOOR ABID

Figures 3-4: *Eorupertia* sp. Azkand Formation; Kz.4. 3- depth 2302m; X63 4- depth 2272m; X32

Figure 5: Unidentified fossil Azkand Formation; Kz.4, depth 2326m; X63

Figure 6: *Lepidocyclina (Eulepidina) dilatata* (Michelotti). Azkand Formation; Kz.4, depth 2305m; X10

Figure 7: Foraminiferal Packstone with *Spirochyeus* sp. and *Amphistegina* sp. Azkand Formation; Kz.4, depth 2308m; X32

Figure 8: *Ostrea* sp. Azkand Formation; Kz.4, depth 2314m; X63

Plate V

Figures 1-2: *Sphaerogypsina* sp. Azkand Formation; 1- Kz.4, depth 2293m; X63 2- Kz.9, depth 2272m; X32

Figures 3-4: Bioclastic Foraminiferal PackstoneAzkand Formation; 3- Kz.4, depth 2302m; X10 4- Kz.3, depth 2338m; X32

Figure 5: Bioclastic *Micropsisina* sp. Packstone Azkand Formation; Kz.9, depth 2267m; X10

Figures 6-7: Mixed Foraminiferal Packstone Azkand Formation; Kz. 9; X32 6- depth 2240m 7- depth 2239m

Figure 8: Rock sample to show coral floatstone Azkand Formation, Kz.4, depth 2290m;

Plate VI

Figure 1: *Lepidocyclina* wackestone Azkand Formation; Kz.4, depth 2313m; X32

Figure 2: Foraminiferal wackestone Azkand Formation; Kz.3, depth 2376m; X32

Figure 3: Foraminiferal Wackestone. Anhydrite Mm chambers of planktonic foraminifera, Azkand Formation; Kz.3, depth 2375m; X63

Figure 4: Foraminiferal Wackestone with Operculina complanata De France, Azkand Formation; Kz.3, depth m; X63

Figures 5-6: Foraminiferal Wackestone with Lenticulina sp. Azkand Formation; Kz.3; X63 5- depth 2377m 6- depth 2378m

Figure 7: Foraminiferal Wackestone with Ditrupa sp. Azkand Formation; Kz.3, depth 2376m; X63

Figure 8: Flaser structure to show Operculina complanata De France and Lepidocyclina (Eulepidina) dilatata (Michelotti), Azkand Formation; Kz.3, depth 2377m; X10

Plate VII

Figures 1-5: Foraminiferal Bioclastic Wackestone-Packstone Azkand Formation; Kz.3;
1- depth 2367m; X32 2- depth 2362m; X32 3- bioclasts of Lepidocyclina sp. depth 2366m; X63 4- bioclasts of Operculina complanata De France with planktonic form. depth 2364m; X63 5- depth 2365m; X63

Figure 6: Coral Framestone, Azkand Formation; Kz.9, depth 2238m; X32

Figure 7: Lithoporella sp. Azkand Formation; Kz.3, depth 2274m; X32

Figure 8: Archaeolithothamnium sp. Azkand Formation; Kz.9, depth 2228m; X10

81
الخلاصة

لقد استخدم مفهوم السحنات كأساس لاعادة بناء بيئة الترسيب القديمة

بتكون أرقان الجبري،

إن عدة أنواع من الحجر الجيري لهذا التكوين تمت دراستها بالتفصيل,

تبعاً للأنواع المختلفة من السحنات الدقيقة.

إن هذا البحث يوضح إن الرواسب تكوين أرقان قد ترسبت في ثلاثة

بيئات مختلفة هي المنحدر القاري، والضحايا أمام الشعاب المرجانية

المبنية بواسطة المرجان السداسي التكافلي.