A NEW REGIONAL APPROACH FOR FREE DISTRIBUTED PARAMETER SYSTEMS

Naseif Jasim Al-Jawari
Department of Mathematics, College of Science, University of Al-Mustansiriyah, Baghdad-Iraq.

Abstract
The aim of this paper is to develop a new approach based on state exponential estimator. More precisely, we extend the notion of regional exponential observability as in ref. [1] to the case where the dynamical systems are uncontrolled (F-systems). For different sensors, we give the characterizations of regional exponential free observer in order that exponential free observability can be achieved. Furthermore, we show that, there exists a dynamical F-system for distributed diffusion F-system is not exponential F-observable in the usual sense, but it may be regional exponential F-observable.

1. Introduction.
In system theory, the asymptotic observability is related to the possibility to estimate the state from the knowledge of system dynamics and the output [2-5]. The notion of regional analysis was extended by El Jai et al. [6-7]. The study of this notion motivated by certain concrete-real problem, in thermic, mechanic, environment [8-11]. The concept of regional asymptotic analysis was introduced recently by Al-Saphory and El Jai in [1,12,13], consists in studying the behaviour of the system not in the entire domain Ω but only on particular region ω of the domain. The principle reason behind introducing this concept is that it provides a means to deal with some physical problems concern the determination of laminar flux conditions, developed in steady by vertical uniformly heated plate (Figure 1).

الخلاصة
الهدف من هذا البحث هو تطوير طريقة جديدة تعتمد على مفهوم المنطقية لحلحلة، بشكل ادق توزيع القابلية على المشاهدة التقاربي المنطقية كما في المصدر [1]. عندما تكون المنظمات المركزية غير سيطرة عليها (منظمات حرارة)، وعلى انواع مختلفة من المنظمات تعطي ميزات مفهوم المشاهد الحر المنطقية، لأجل إنتاج القابلية على المشاهدة الحر المنطقية. للكن منظمات حرارة توزيعية حرارية ليست قابلة للمشاهد الحر المنطقية في المعني العام، ولكن قابلة للمشاهد الحر المنطقية.

1. مقدمة.
في نظرية النظام، القابلية العاكسية متعلقة بال сахарة إمكانية توقع الحالة من خلال المعرفة من نظام النظام والخرج [2-5]. مفهوم الانتزاع التأسيسي كان تمتد من قبل إيل جاي إت آل. [6-7]. تم التشبيك هذه الفكرة عن طريق بعض المسائل الحقيقية، في الحراري، الميكانيك، البيئة [8-11]. نظرية الانتزاع التأسيسي تم تقديمها مؤخرًا من قبل بسيري ويل جاي في [1,12,13], يشمل دراسة السلوك من النظام للكل في مزيج منطقية Ω ولكن فقط على منطقة منطقية ω من النطاق. السبب الأساسي وراء تقديم هذا المفهوم هو أنه يوفر وسيلة لمعالجة بعض المشاكل الفيزيائية تتعلق بالتحديد من التدفق الحراري المستقلي، بانتظام من خلال لوحة حارة متسامحة (الشكل 1).
This exponential approach can be extended to find unknown boundary convective condition on the front face of the active plate, as in [9]. The reconstruction is based on knowledge of the dynamical F-system (regional exponential observer) and the measurement given by internal pointwise sensors (that by means by the thermocouples).

The paper is organized as follows. Section 2 devotes to the introduction of exponential regional approach. We give the formulation problem and preliminaries. We need some notions concern the exponential behaviour $(\omega$-strategic sensor, ω_{Ef}-detectability, ω_{Ef}-observer). Section 3 related to the characterization notion of ω-observable by the use of strategic sensors. In last section, we illustrate applications with many situations of sensors locations.

2. Regional exponential Approach

2.1 Considered systems

Let Ω be an open bounded subset of \mathbb{R}^n, with boundary $\partial \Omega$ and $[0, T], T > 0$ be a time measurement interval. Suppose that ω be a connected non-empty given subregion of Ω. We denote $\Theta = \Omega \times (0, \infty)$ and $\Pi = \partial \Omega \times (0, \infty)$. The considered F-systems is described by the following parabolic equations

\[
\begin{align*}
\frac{\partial x}{\partial t} (\xi, t) &= A x (\xi, t) \Theta \\
x (\xi, 0) &= x_0 (\xi) \Omega \\
x (\eta, t) &= 0 \Pi
\end{align*}
\]

(2.1)

where A is a second order linear differential operator, which generates a strongly continuous semi-group $(S_A(t))_{t \geq 0}$ on the Hilbert space $X = L^2 (\Omega)$ and is self-adjoint with compact resolvent. The spaces X and O be separable Hilbert spaces where X is the state space and $O = L^2 (0, \infty, \mathbb{R}^q)$ is the observation space, where q are the numbers of sensors. Under the given assumptions[16], the F-system (2.1) has a unique solution:

\[x(\xi, t) = S_A(t)x(\xi)\]

(2.2)

The problem is that, how to construct an approach which estimate exponentially the current state in a given region ω (see figure 1).

2.2 Regional strategic sensors

The purpose of this subsection is to give the characterization for sensors in order that the system (2.1) is regionally approximately observable in ω.

- Sensors are any couple $\Omega_i, f_i_{1 \leq i \leq q}$ where Ω_i denote closed subsets of Ω, which is spatial supports of sensors and $f_i \in L^2 (\Omega_i)$ define the spatial distributions of measurements on Ω_i.

The measurements may be given by q sensors $(\Omega_i, f_i)_{1 \leq i \leq q}$ and then, the output functions are given by the form

\[y(. , t) = [y_1(. , t), y_2(. , t), \ldots, y_q(. , t)]^T\]

where

\[y_i(. , t) = < x(. , t), f_i(.) >_{L^2 (\Omega_i)}\]

and in the case of pointwise

\[y_i(. , t) = < x(. , t), \delta_{\Omega_i}(.) >_{L^2 (\Omega)}\]

Thus, these equations may be given the augmented output function of the F-system (2.1) by

\[y(. , t) = Cx(. , t)\]

(2.3)
The operator $C \in L(R^q, X)$, depend on the structures of sensors [14-15].

- According to the choice of the parameters Ω_i and f_i, we have various types of sensors. These sensors may be types of internal zones when $\Omega_i \subset \Omega$. The output function (2.3) can be written in the form

$$y(.,t) = \mathcal{L}_{\Omega_i}(x(.,t), f_i(.))$$

- Sensors may also be internal pointwise when $\Omega_i = \{b_i\} \subset \Omega$ and $f_i = \delta_i(x - b_i)$ where δ_i is Dirac mass concentrated in b_i with $i = 1, \ldots, q$. Then, the output function (2.3) can be given by the form

$$y(.,t) = \mathcal{L}_{\Omega_i}(x(.,t), \delta_i(.)) = x(b_i, t), \quad \forall i = 1,\ldots,q$$

- In the case, of internal pointwise sensors the operator C is unbounded and some precaution must be taken in [14-15].

- For $x(\xi, t) = S_\lambda(t) x(\xi)$, defines the operator $K = CS_\lambda(t)h$ by the form

$$K : X \rightarrow O$$

$$h \rightarrow CS_\lambda(.)h$$

where it is, in the case of internal zone sensors, linear and bounded [17]. The adjoint operator K^* of K is defined by

$$K^*y = \int_0^1 S_\lambda^*(s) C^*y(s) ds$$

- For the region ω of the domain Ω, the restriction operator χ_ω is defined by

$$\chi_\omega : L^2(\Omega) \rightarrow L^2(\omega)$$

$$x \rightarrow \chi_\omega x = x \mid _\omega$$

where χ_ω is the restriction of x to ω.

Definition 2.1: An F-system (2.1) augmented with output function (2.3) is exactly ω-observable if:

$$\text{Im} \chi_\omega K^* = L^2(\omega)$$

Definition 2.2: An F-system (2.1) augmented with output function (2.3) is approximately ω-observable if:

$$\text{Im} \chi_\omega K^* = L^2(\omega)$$

Definition 2.3: A sequence of sensors $(\Omega_i, f_i)_{1 \leq i \leq q}$ is ω-strategic if the F-system (2.1)-(2.3) is approximately ω-observable [6]. The concept of ω-strategic has been extended to the regional boundary case as in [18]. Assume that the set (φ_{n_j}) of eigenfunctions of $L^2(\Omega)$ orthonormal in $L^2(\omega)$ associated with eigenvalues λ_n of multiplicity r_n and suppose that the F-system (2.1) has J unstable modes. Then we have the following result:

Proposition 2.4 Suppose that sup $r_n = r < \infty$.

Then suite of sensors $(\Omega_i, f_i)_{1 \leq i \leq q}$ is ω-strategic if and only if:

1. $q \geq r$

2. where $G_n = r_n, \quad \forall n, \quad n = 1, \ldots, J$ where

$$G_n = \begin{bmatrix} <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} & \cdots & <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} \\ <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} & \cdots & <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} \\
\vdots & \ddots & \vdots \\
<\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} & \cdots & <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} \end{bmatrix}$$

with $J = 1, \ldots, r_n$.

Proof: The proof of this proposition is similar to the rank condition in [17], the main difference is that the rank condition rank $G_n = r_n, \quad \forall n$ For the proposition 2.4. need only hold for rank $G_n = r_n, \quad \forall n, \quad n = 1, \ldots, J$. In the case where the sensors are pointwise, then, we have

$$G_n = \begin{bmatrix} <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} & \cdots & <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} \\ <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} & \cdots & <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} \\
\vdots & \ddots & \vdots \\
<\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} & \cdots & <\varphi_{n_i}, \delta_i(.)>_{L^2(\omega)} \end{bmatrix}$$

2.3 Regional exponential approach behaviour

Regional exponential F-observability characterization needs some notions which are related to the exponential behaviour (stability, detectability and observer). The concept of exponential approach has been extended recently by Al- Saphory as in [13]. In this subsection, we need to extend these results to F-system.

Definition 2.5: A semi-group is regionally exponential free stable in $L^2(\omega)$ (or ω_{st}-stable)
if for every initial state \(x_0(.) \in \mathcal{L}^2(\Omega) \), the solution of the dynamical \(F \)-system (2.1) converges exponentially to zero when \(t \to \infty \).

Definition 2.6: The \(F \)-system (2.1) is said to be exponentially free stable on \(\omega \) (or \(\omega_{\text{ef}} \)-stable), if the operator \(A \) generates a semi-group which is exponentially free stable in \(\mathcal{L}^2(\omega) \). It is easy to see that the \(F \)-system (2.1) is \(\omega_{\text{ef}} \)-stable if and only if, for some positive constants \(M_{\omega_{\text{ef}}} \) and \(\alpha_{\omega_{\text{ef}}} \) such that:

\[
\left\| X_{\omega_{\text{ef}}} S_A(\cdot) \right\|_{\mathcal{L}(\mathcal{L}^2(\omega), \mathcal{L}^2(\omega))} \leq M_{\omega_{\text{ef}}} e^{-\alpha_{\omega_{\text{ef}}} t} \geq 0
\]

(2.6)

If \((S_A(t))_{t \geq 0} \) is \(\omega_{\text{ef}} \)-stable, then for all \(x(.) \in \mathcal{L}^2(\Omega) \), the solution of \(F \)-system (2.1) satisfies

\[
\left\| x(t) \right\|_{\mathcal{L}^2(\omega)} = \left\| X_{\omega_{\text{ef}}} S_A(\cdot)x \right\|_{\mathcal{L}(\mathcal{L}^2(\omega), \mathcal{L}^2(\omega))} \leq M_{\omega_{\text{ef}}} e^{-\alpha_{\omega_{\text{ef}}} t} \left\| x \right\|_{\mathcal{L}^2(\Omega)}
\]

and then

\[
\lim_{t \to \infty} \left\| x(t) \right\|_{\mathcal{L}^2(\omega)} = 0
\]

Definition 2.7: The \(F \)-system (2.1) augmented with the output function (2.3) is said to be exponentially free detectable on \(\omega \) (or \(\omega_{\text{ef}} \)-detectable) if there exists an operator \(H_{\omega_{\text{ef}}} : \mathbb{R}^q \to \mathcal{L}^2(\omega) \) such that \((A - H_{\omega_{\text{ef}}})C \) generates a strongly continuous semi-group \((S_{H_{\omega_{\text{ef}}}}(t))_{t \geq 0}\) which is \(\omega_{\text{ef}} \)-stable.

Definition 2.8: Consider the \(F \)-system (2.1)-(2.3) together with the dynamical \(F \)-system

\[
\begin{aligned}
\frac{\partial z}{\partial t}(\xi,t) &= F_{\omega_{\text{ef}}} z(\xi,t) + H_{\omega_{\text{ef}}} y(t) \quad \Theta \\
z(\xi,0) &= z(\xi) \quad \Omega \\
z(\eta,t) &= 0 \quad \Pi
\end{aligned}
\]

(2.7)

where \(F_{\omega_{\text{ef}}} \) generates a strongly continuous semi-group \((S_{F_{\omega_{\text{ef}}}}(t))_{t \geq 0}\) which is stable on Hilbert space \(\mathcal{Z} \) and \(H_{\omega_{\text{ef}}} \in L(\mathbb{R}^q, \mathcal{Z}) \). The \(F \)-system (2.7) defines an \(\omega_{\text{ef}} \)-estimator for \(\chi_{\omega_{\text{ef}}} T x(\xi,t) \) if:

1. \(\lim_{t \to \infty} \left\| z(.,t) - \chi_{\omega_{\text{ef}}} T x(.,t) \right\|_{\mathcal{L}(\mathcal{L}^2(\omega), \mathcal{L}^2(\omega))} = 0 \)
2. \(\chi_{\omega_{\text{ef}}} T \) maps \(D(A) \) in \(D(F) \) where \(z(\xi,t) \) is the solution of the \(F \)-system (2.7).

Definition 2.9: The \(F \)-system (2.7) specifies an \(\omega_{\text{ef}} \)-observer for the \(F \)-system (2.1)-(2.3) if the following conditions hold:

1. There exists \(M_{\omega_{\text{ef}}} \in L(\mathbb{R}^q, \mathcal{L}^2(\omega)) \) and \(N_{\omega_{\text{ef}}} \in L(\mathcal{L}^2(\omega)) \) such that

\[
M_{\omega_{\text{ef}}} + N_{\omega_{\text{ef}}} \chi_{\omega_{\text{ef}}} T = I_{\omega_{\text{ef}}}
\]

(2)

\[
(\chi_{\omega_{\text{ef}}} T A + F_{\omega_{\text{ef}}} \chi_{\omega_{\text{ef}}} T = H_{\omega_{\text{ef}}} C)
\]

(3) The \(F \)-system (2.7) defines an \(\omega_{\text{ef}} \)-observer. Definition 2.10: The system (2.7) is said to be \(\omega_{\text{ef}} \)-observer for the \(F \)-system (2.1)-(2.3) if \(X = \mathcal{Z} \) and \(\chi_{\omega_{\text{ef}}} T = I_{\omega_{\text{ef}}} \). In this case, we have

\[
F_{\omega_{\text{ef}}} = A - H_{\omega_{\text{ef}}} C.
\]

Then the dynamical \(F \)-system (2.7) becomes

\[
\begin{aligned}
\frac{\partial z}{\partial t}(\xi,t) &= A z(\xi,t) + H_{\omega_{\text{ef}}} (C z(\xi,t) - y(.,t)) \quad \Theta \\
z(\xi,0) &= 0 \quad \Omega \\
z(\eta,t) &= 0 \quad \Pi
\end{aligned}
\]

(2.8)

Definition 2.11: The \(F \)-system (2.1)-(2.3) is \(\omega_{\text{ef}} \)-observable, if there exists a dynamical \(F \)-system which is \(\omega_{\text{ef}} \)-observer, for the original \(F \)-system.

Now, the approach which is observed the current state \(x(\xi,t) \) exponentially is given by the following section:

3. **Regional exponential state reconstruction method**

In this section, we give an approach which allow to construct an \(\omega_{\text{ef}} \)-estimator of \(x(\xi,t) \). This method avoids the consideration of initial state \([\text{[7]}\), it enables to observe exponentially the current state in \(\omega \) without needing the effect of the initial state of the considered \(F \)-system.

Theorem 3.1: Suppose that the sequence of sensors \((D_i, f_i)_{1 \leq i \leq q}\) is \(\omega \)-strategic and the
spectrum of A contain J eigenvalues with non-negative real parts. Then, the F-system (2.1) augmented with the output function (2.2) is ω_{Ef}-observable by the following dynamical F-system
\[
\begin{aligned}
\frac{d\hat{x}}{dt}(\xi,t) &= Ax(\xi,t) - H_{\text{wmg}} C(z(\xi,t) - y(.,.)) \\
z(\xi,0) &= x_1(\xi) \\
z(\eta,t) &= 0
\end{aligned}
\]
and therefore \(\Theta \), \(\Omega \), generates exponentially stable, then there exists \(\omega \) is the state component of the stable part of the F-system (2.1), may be written in the form
\[
\begin{aligned}
\frac{d\hat{x}_1}{dt}(\xi,t) &= A_1 x_1(\xi,t) \\
x_1(\xi,0) &= x_{11}(\xi) \\
x_1(\eta,t) &= 0
\end{aligned}
\]
and \(x_2(\xi,t) \) is the state component of the stable part of the F-system (2.1) given by
\[
\begin{aligned}
\frac{d\hat{x}_2}{dt}(\xi,t) &= A_2 x_2(\xi,t) \\
x_2(\xi,0) &= x_{21}(\xi) \\
x_2(\eta,t) &= 0
\end{aligned}
\]
\[
(2.9)
\]
\textbf{Proof:} The proof is limited to the case of zone sensors in the following steps:

\textbf{Step 1.} Under the assumptions of subsection 2.1, the F-system (2.1) can be decomposed on two parts, unstable and stable. The state vector may be given by
\[
x(\xi,t) = [x_1(\xi,t) + x_2(\xi,t)]^T
\]
where \(x_1(\xi,t) \) is the state component of the unstable part of the F-system (2.1), may be written in the form
\[
\begin{aligned}
\frac{d\hat{x}_1}{dt}(\xi,t) &= A_1 x_1(\xi,t) \\
x_1(\xi,0) &= x_{11}(\xi) \\
x_1(\eta,t) &= 0
\end{aligned}
\]
\[
(2.10)
\]
and \(x_2(\xi,t) \) is the state component of the stable part of the F-system (2.1) given by
\[
\begin{aligned}
\frac{d\hat{x}_2}{dt}(\xi,t) &= A_2 x_2(\xi,t) \\
x_2(\xi,0) &= x_{21}(\xi) \\
x_2(\eta,t) &= 0
\end{aligned}
\]
\[
(2.11)
\]
The operator \(A_i \) is represented by matrix of order \(\sum_{i=1}^{J} r_i \times \sum_{i=1}^{J} r_i \) given by
\[
A_i = \text{diag}[\lambda_1, \ldots, \lambda_1, \lambda_2, \ldots, \lambda_i, \ldots, \lambda_j]
\]
\textbf{Step 2.} Since the sequence suite of sensors \((D_j, f_j)_{1 \leq j \leq 1} \) is \(\omega \)-strategic for the unstable part of the F-system (2.1). The sub F-system (2.10) is approximately \(\omega \)-observable [6], and since it is of finite dimensional, then it is exactly \(\omega \)-observable [3]. Therefore it is \(\omega_{\text{Ef}} \)-detectable, and hence there exists an operator \(H_{\text{wmg}}^1 \) such that \(A_i - H_{\text{wmg}} C \) which satisfies the following:
\[
\exists M_{\text{wmg}}, \alpha_{\text{wmg}} > 0 \text{ such that }
\|e^{(A_i - H_{\text{wmg}} C)t}\| \leq M_{\text{wmg}} e^{-\alpha_{\text{wmg}}t}
\]
and then, we have
\[
\|x(.,t)\|_{L^2(\omega)} \leq M_{\text{wmg}} e^{-\alpha_{\text{wmg}}t} \|x(.,.)\|_{L^2(\omega)}
\]
Since the semi-group generated by the operator \(A_2 \) is \(\omega_{\text{Ef}} \)-stable, then there exists \(M_{\text{wmg}}^2, \alpha_{\text{wmg}}^2 > 0 \) such that
\[
\|x(.,t)\|_{L^2(\omega)} \leq M_{\text{wmg}}^2 e^{-\alpha_{\text{wmg}}^2t} \|x(.,.)\|_{L^2(\omega)}
\]
and therefore \(\|x(\xi,t)\|_{L^2(\omega)} \to 0 \) when \(t \to \infty \).
Finally, the F-system (2.1)-(2.3) is \(\omega_{\text{Ef}} \)-detectable.

\textbf{Step 3.} Let \(e(\xi,t) = x(\xi,t) - z(\xi,t) \) where \(z(\xi,t) \) solution of the F-system (2.9). Driving the above equation and using equation (2.1) and (2.9), we obtain
\[
\frac{\partial e}{\partial t} (\xi,t) = \frac{\partial x}{\partial t} (\xi,t) - \frac{\partial z}{\partial t} (\xi,t) = A_1 x_1(\xi,t) - A z_1(\xi,t) + H_{\text{wmg}} C (z(\xi,t) - x(.,.)) = (A - H_{\text{wmg}} C) e(\xi,t)
\]
Since the F-system (2.1)-(2.2) is \(\omega_{\text{Ef}} \)-detectable, there exists an operator \(H_{\text{wmg}} \in L(R^d, L^2(\omega)) \), such that the operator \((A - H_{\text{wmg}} C) \) generates exponentially regionally stable, strongly continuous semi-group \((S_{H_{\text{wmg}}}(t))_{t \geq 0} \) on \(L^2(\omega) \) which is satisfied the following relations:
\[
\exists M_{\text{wmg}}, \alpha_{\text{wmg}} > 0 \text{ such that }
\|e^{(A_i - H_{\text{wmg}} C)t}\| \leq M_{\text{wmg}} e^{-\alpha_{\text{wmg}}t}
\]
Finally, we have
\[
\|e(.,t)\|_{L^2(\omega)} \leq M_{\text{wmg}} e^{-\alpha_{\text{wmg}}t} \|e(.,.)\|_{L^2(\omega)}
\]
with \(e(.,.) = x(.,.) - z(.,.) \) and therefore \(e(\xi,t) \) converges exponentially to zero as \(t \to \infty \). Thus the dynamical F-system (2.9) is observes exponentially the regional state \(x(\xi,t) \) of the F-
system original F-system and (2.1)-(2.3) is ω_{EF}-observable.

Remark 3.2: We can deduce that:

1. An F-system which is exactly ω-observable, is ω_{EF}-observable.
2. An F-system which is exponentially observable is ω_{EF}-observable.

Example 3.3: Consider the F-system:

\[
\begin{align*}
\frac{\partial x}{\partial t} (\xi, t) &= \Delta x (\xi, t) + x (\xi, t) & \Theta \\
x(\xi, 0) &= x_0 (\xi) & \Omega \\
z(\eta, t) &= 0 & \Pi
\end{align*}
\]

(2.12)

augmented with the output function

\[
y(t) = \int_\Omega x(\xi, t) \delta(\xi - b_i) d\xi
\]

(2.13)

where $\Omega = (0, 1)$ and $b_i \in \Omega$ are the location of sensors (b_i, δ_i). The operator $A = (\Delta + 1)$ generates a strongly continuous semi-group $(S_A(t))_{t \geq 0}$ on the Hilbert space $L^2(\omega)$ [16].

Consider the dynamical F-system

\[
\begin{align*}
\frac{\partial z}{\partial t} (\xi, t) &= \Delta z (\xi, t) + z (\xi, t) & \\
- HC (z(\xi, t) - x(\xi, t)) &= (0, 1), t > 0 \\
z(\xi, 0) &= z_0 (\xi) & (0, 1) \\
z(0, t) &= z(1, t) = 0 & t > 0
\end{align*}
\]

(2.14)

where $H \in L(R^q, Z)$, Z is the Hilbert space and $C: Z \rightarrow R^q$ is linear operator. If $b_i \in Q$, then the sensors (b_i, δ_i) is not strategic for the unstable free sub F-system of (2.12) [2] and therefore the free system (2.12)-(2.13) is not exponentially detectable in Ω [15]. Then the dynamical F-system (2.14) is not free observer and then (2.12)-(2.13) is not exponentially observable [16].

Figure 2: The domain Ω, the subregion ω and the location sensors b_i.

Now, we consider the region $\omega = (0, \beta) \subset (0, 1)$ and the dynamical F-system

\[
\begin{align*}
\frac{\partial z}{\partial t} (\xi, t) &= \Delta z (\xi, t) + z (\xi, t) & \\
- H_{\omega_{af}} C (z(\xi, t) - x(\xi, t)) &= (0, 1), t > 0 \\
z(\xi, 0) &= z_0 (\xi) & (0, 1) \\
z(0, t) &= z(1, t) = 0 & t > 0
\end{align*}
\]

(2.15)

where $H_{\omega_{af}} \in L(R^q, L^2(\omega))$. If $b_i / \beta \notin Q$, then the sensors (b_i, δ_i) is ω-strategic for the unstable free sub F-system of (2.12) [8], and then the F-system (2.12)-(2.13) is ω_{EF}-detectable. Therefore the F-system (2.12)-(2.13) is ω_{EF}-observable by ω_{EF}-observer [13].

4. Application to Sensors Locations

In this section, we present an application of the above results to a two-dimensional F-system defined on $\Omega = (0, 1) \times (0, 1)$ by the form

\[
\begin{align*}
\frac{\partial x}{\partial t} (\xi_1, \xi_2, t) &= \Delta x (\xi_1, \xi_2, t) & \Theta \\
x(\xi_1, \xi_2, 0) &= x_0 (\xi_1, \xi_2) & \Omega \\
x(\eta_1, \eta_2, t) &= 0 & \Pi
\end{align*}
\]

(4.1)

together with output function by (2.4), (2.5). Let $\omega = (a_1, b_1) \times (a_2, b_2)$ be the considered region is subset of $(0, 1) \times (0, 1)$. In this case, the eigenfunctions of F-system (4.1) are given by

\[
\varphi_{ij} (\xi_1, \xi_2)
\]

\[
\rho_{ij} (\xi_1, \xi_2) = \frac{2}{\sqrt{(\beta_1 - \alpha_1)(\beta_2 - \alpha_2)}} \sin \pi (\xi_1 - \alpha_1) \sin \pi (\xi_2 - \alpha_2)
\]

(4.2)

associated with eigenvalues

\[
\lambda_{ij} = \left(\frac{i^2}{(\beta_1 - \alpha_1)^2} + \frac{j^2}{(\beta_2 - \alpha_2)^2} \right)
\]

(4.3)

The following results give information on the location of internal zone or pointwise ω-strategic sensors.

4.1 Internal zone sensor

Consider the F-system (4.1)-(4.3) where the sensor supports Ω_1 are located in Ω. The output (2.4) can be written by the form
\[y(t) = \langle x(., t), f \rangle_{L^2(\Omega)} = \int_{\Omega} x(\xi_1, \xi_2, t) f_1(\xi_1, \xi_2) d\xi_1 d\xi_2 \] (4.4)

where \(\Omega \subset \Omega \) is location of zone sensor and \(f_1 \in L^2(\Omega) \). In this case of (figure 3), the eigenfunctions and the eigenvalues are given by (4.2) and (4.3). However, if we suppose that

\[\frac{(\beta_1 - \alpha_1)^2}{(\beta_2 - \alpha_2)^2} \not\in Q \] (4.5)

Then \(r = 1 \) and one sensor may be sufficient to achieve \(\omega_{Ef} \)-observability [19]. In this case the dynamical F-system (2.9) is given by

\[
\begin{align*}
\frac{\partial z}{\partial t}(\xi_1, \xi_2, t) &= \Delta z(\xi_1, \xi_2, t) - H_{\omega y} \\
\langle x(., t), f \rangle &> -Cz(\xi_1, \xi_2, t) \quad \Theta \\
z(\xi_1, \xi_2, 0) &= z(\xi_1, \xi_2) \quad \Omega \\
z(\eta_1, \eta_2, t) &= 0 \quad \Pi
\end{align*}
\] (4.6)

\[y(t) = \langle x(., t), \delta \rangle_{L^2(\Omega [0, 1])} = x(b, t) \] (4.7)

where \(b = (b_1, b_2) \) is the location of pointwise sensor as defined in (figure 4).

4.2 Internal pointwise sensor

Let us consider the case of pointwise sensor located inside of \(\Omega \). The F-system (4.1) is augmented with the following output function:

\[y(t) = \langle x(., t), \delta \rangle_{L^2(\Omega [0, 1])} = x(b, t) \] (4.7)

where \(b = (b_1, b_2) \) is the location of pointwise sensor.

4.3 Internal filament sensor

Consider the case where the observation on the curve \(\sigma = \text{Im}(\gamma) \) with \(\gamma \in C^1(0, 1) \) (see figure 5), then we have,

\[
\begin{align*}
\frac{\partial z}{\partial t}(\xi_1, \xi_2, t) &= \Delta z(\xi_1, \xi_2, t) \\
\langle x(., t), f \rangle &> -Cz(\xi_1, \xi_2, t) \quad \Theta \\
z(\xi_1, \xi_2, 0) &= z(\xi_1, \xi_2) \quad \Omega \\
z(\eta_1, \eta_2, t) &= 0 \quad \Pi
\end{align*}
\] (4.8)

If \(\beta_1 - \alpha_1 \not\in \beta_2 - \alpha_2 \) then \(r = 1 \) and one sensor may be sufficient for \(\omega_{Ef} \)-observability. Then, the dynamical F-system is given by

\[
\begin{align*}
\frac{\partial z}{\partial t}(\xi_1, \xi_2, t) &= \Delta z(\xi_1, \xi_2, t) \\
+ H_{\omega y} \langle (b_1, b_2, t) - y(t) \rangle \quad \Theta \\
z(\xi_1, \xi_2, 0) &= z(\xi_1, \xi_2) \quad \Omega \\
z(\eta_1, \eta_2, t) &= 0 \quad \Pi
\end{align*}
\] (4.8)

Thus, we obtain:

Corollary 4.2: The free system (4.1)-(4.7) is not \(\omega_{Ef} \)-observable by the dynamical F-system (4.8), if \(\beta_1 - \alpha_1 \not\in \beta_2 - \alpha_2 \) and \(\beta_2 - \alpha_2 \not\in \).
Corollary 4.3: If the observation recovered by filament sensor \((\sigma, \delta, \alpha)\) such that is symmetric with respect to the line \(\xi = b\). The F-system \((4.1)-(4.7)\) is not \(\omega_{Ef}\)-observable by \((4.8)\) if
\[
(b_1 - \alpha_1)/(\beta_1 - \alpha_1)
\]
and
\[
(b_2 - \alpha_2)/(\beta_2 - \alpha_2) \in \Omega.
\]

Remark 4.4: These results can be extended to the following:
1. Case of Neumann or mixed boundary conditions [2-3].
2. Case of disc domain \(\Omega = (0,1)\) and \(\omega = (0, \rho_\omega)\) where \(\omega \subset \Omega\) and \(0 < \rho_\omega < 1\) [1].
3. Case of boundary sensors where \(C \not\in L(X, R^4)\), we refer to see [14-15].

5. Conclusion
The concept developed in this paper is related to the a new approach, that means by the concept of regional exponential F-observability in connection with the strategic sensors. It permits us to avoid some "bad" sensors locations. Various interesting results concerning the choice of sensors structure are given and illustrated in specific situations. The case of extend the results as in ref. [20] to this case is under considerations.

References

