Let R be an associative ring with identity and M be unital non zero right R-module. M is called H-supplemented module if given any submodule A of M there exist a direct summand submodule D of M such that $M = A + X$ iff $M = D + X$ where X is a submodule of M. In this paper we will give a generalization for H-supplemented which is called pure-supplemented module. An R-module M is called pure-supplemented module if given any submodule A of M there exists a pure submodules P of M such that $M = A + X$ iff $M = P + X$.

Equivalently, for every submodule A of M there exists a pure submodule P of M such that $A + P \ll P$ and $A + P \ll M$.

Key words: Small submodule, Supplemented module, Pure module, lifting module.

Abstract.

Let R be an associative ring with identity and M be unital non zero right R-module. M is called H-supplemented module if given any submodule A of M there exist a direct summand submodule D of M such that $M = A + X$ iff $M = D + X$ where X is a submodule of M. In this paper we will give a generalization for H-supplemented which is called pure-supplemented module. An R-module M is called pure-supplemented module if given any submodule A of M there exists a pure submodules P of M such that $M = A + X$ iff $M = P + X$.

Equivalently, for every submodule A of M there exist a pure submodule P of M such that $A + P \ll P$ and $A + P \ll M$.

Key words: Small submodule, Supplemented module, Pure module, lifting module.

Pure–Supplemented Modules

Sahira Mahmood Yasen, Wasan Khalid Hasan

Department of Mathematics, College of Science, University of Baghdad, Baghdad-Iraq.

sahira.mahmood@gmail.com.
Introduction:

Let R be an associative ring with identity and M be a non zero unital right R-module. A submodule N of M is called a small submodule of M, denoted by $N \ll M$, if $N + L \neq M$ for any proper submodule L of M [1]. Let U be a submodule of M, a submodule V of M is called supplement of U if V is minimal element in the set of submodules $L \leq M$ with $U + L = M$ equivalently $U + V = M$ and $U \cap V \ll V$. An R-module M is called supplemented if every submodule of M has supplement in M [2].

M is called H–supplemented module if given any submodule A of M there exist a direct summand D of M such that $M = A + X$ iff $M = D + X$.

Definition 1.2: [3] Let M be an R-module. P is called pure submodule of M if $KM \cap P = KP$ for every ideal K in R.

Remarks 1.3: [3]

1) Any direct summand submodule is pure submodule in M.
2) If $H \leq M$ and $K \leq H$ such that H is pure in M and K is pure in H then K is pure in M.
3) If A is pure submodule of M and K is pure submodule of N then $A \oplus K$ is pure of $M \oplus N$.

As a generalization of H-supplemented module, we introduce the pure-supplemented module.

Definition 1.4: Let M be a module. M is called pure–supplemented module if given any submodule A of M there exists a pure submodule P of M such that $M = A + X$ iff $M = P + X$.

Since every direct summand submodule is pure then it is clear that each H–supplemented module is pure–supplemented.

Remark 1.5:

1) Every hollow module is pure-supplemented module.
2) Every lifting module is pure-supplemented module.
3) Every P-supplemented is weakly supplemented.

Proof:

1) Since every hollow module is H-supplemented module then is pure-supplemented module.
2) Let A be submodule of M there exists $K \leq A$, $M = N \oplus K$ where $N \leq M$ and $N \cap A \ll M$ then $M = A + N$ iff $M = K + N$ where K is pure since K is direct summand submodule.
3) Let N be submodule of M, such that $N + X = M$, to show that $N \cap X \ll M$. Let $(N \cap X) + L = M$, since M pure–supplemented there exists a pure submodule P of M such that $N \cap X + L = M$, iff $M = P + L$ iff...
N(1) X+P ≤ L then N(1) X ≤ L hence L=M and

In this section we introduce the pure – lifting module as a generalization of lifting module.

Definition 1.6: Let M be a module . M is called pure– lifting module if for every submodule A of M there exists a pure submodule P of M , P≤ A such that M = P+X with A∩X<<X.

It is clear that every lifting and simesimple module are pure– lifting module .

Theorem 1.7: The following are equivalent for an R- module M .

1) M is pure– lifting module
2)Every submodule N of M can be written as N=A+S where A is pure in M and S << M.
3)For every submodule N of M there exists a pure submodule A of N such that M= A +K and \(\frac{N}{A} << \frac{M}{A} \).

2→3) Let N be a submodule of M by (2) N=A+S where A is pure in M and S << M suppose \(\frac{M}{A} = \frac{N}{A} + \frac{L}{A} \).Then \(\frac{M}{A} = \frac{A+S}{A} + \frac{L}{A} \), Thus A+S+L=M, by(2) since S << M then A+L=M.

3→1) Let N be submodule of M ,there exists a pure submodule A of Nsuch that M= A +K and \(\frac{N}{A} << \frac{M}{A} \) to prove that N∩K<<K. Suppose that N∩K+B=K where B≤Kthen M=A+K=N∩K+B thus \(\frac{M}{A} = \frac{A+(N \cap K) + B}{A} = \frac{N \cap K + A + A + B}{A} = \frac{N + A + B}{A} \),since \(\frac{N}{A} << \frac{M}{A} \) then \(\frac{A + B}{A} = \frac{M}{A} \) thus A+B=M then and hence B=K thus N∩K<<K.

Proposition 1.8: Every pure – lifting is pure- supplemented module .

Proof :Let M be pure – lifting and A be a submodule of M suppose that M=A+Y then M=K+L where K≤ A and K pure in M and A∩L<<M, now A= A∩M = A∩(K+L)=K+ A∩L then

Let M= A+X =K+ A∩L +X since A∩L<<M then M=K+X thus M=A+X since K≤L then M is pure- supplemented module .

Proposition 1.9: Let M be an R- module M is pure– supplemented module iff for every submodule A of M there exist a pure submodule P of M such that \(\frac{A+P}{P} << \frac{M}{P} \) and \(\frac{A+P}{A} << \frac{M}{A} \).

Proof : (⇒) Let M be a pure- supplemented module .and A≤ M then there exist a pure submodule P such that M = A+X iff M= P+X . suppose that \(\frac{A+P}{P} + \frac{L}{P} = \frac{M}{P} \) then \(\frac{A+L}{P} = \frac{M}{P} \) thus \(\frac{A+L}{P} = \frac{M}{P} \) then

L=M .M is pure - supplemented ,A+L=M=P+X, P≤L ,then A+X≤L, then M≤L thus \(\frac{L}{P} = \frac{M}{P} \) therefore \(\frac{A+P}{P} << \frac{M}{P} \)

similarly \(\frac{A+P}{A} << \frac{M}{A} \).

(⇐) Let A be submodule of M ,then there exists a pure submodule P of M suchthat \(\frac{A+P}{P} << \frac{M}{P} \) and \(\frac{A+P}{A} << \frac{M}{A} \).If M=A+X then \(\frac{A+X}{P} = \frac{M}{P} \) then \(\frac{A+P}{P} + \frac{X+P}{P} \)

but \(\frac{A+P}{P} << \frac{M}{P} \).Then \(\frac{M}{P} - \frac{X+P}{P} \) thus M=X+P .In the same way one can show that if M= X+P then M=A+X.

Proposition 1.10 Let M be pure– supplemented module and A be a submodule of M .If for every pure submodule P of M ,
\[\frac{A + P}{A} \] is pure in \[\frac{M}{A} \] then \[\frac{M}{A} \] is pure–supplemented module.

Proof: Let \(\frac{N}{A} \leq \frac{M}{A} \), and let \[\frac{M}{A} = \frac{N}{A} + \frac{X}{A} \]
where \(A \leq X \) then \(M = N + X \) iff \(M = P + X \) where \(P \) is pure in \(M \), \((M\) pure–supplemented). Then \[\frac{M}{A} = \frac{P + X}{A} = \frac{P + A}{A} + \frac{X}{A} \]
by assumption \(\frac{A + P}{A} \) is pure in \(\frac{M}{A} \) hence \(\frac{M}{A} \) is pure – supplemented.

Recall that a submodule \(A \) of \(R \)-module \(M \) is called fully invariant if for every \(f \in \text{End}_R(M) \), \(f(X) \subseteq X \). A module \(M \) is called distributive iff for every submodules \(K, L, N \), of \(M \) we have \(N + (K \cap L) = (N + K) \cap (N + L) \) or \(N \cap (K + L) = (N \cap K) + (N \cap L) \).

Corollary 1.11: Let \(M \) be a distributive pure–supplemented module then \(\frac{M}{M} \) is pure–supplemented module for every submodule \(A \) of \(M \).

Proof: Let \(D \) be direct summand of \(M \), then \(M = D \oplus K \) for some \(K \) submodule of \(M \).

\[\frac{M}{A} = \frac{D + A}{A} + \frac{K + A}{A} \]
and \(A = A + (D \cap K) = (A + D) \cap (A + K) \) (\(M \) is distributive) then \(\frac{M}{A} = \frac{D + A}{A} \oplus \frac{K + A}{A} \) hence \(\frac{D + A}{A} \) is direct summand of \(\frac{M}{A} \),
then is pure in \(\frac{M}{A} \) thus by proposition (1.10) we get \(\frac{M}{A} \) is pure–supplemented.

Corollary 1.12: Let \(A \) be a submodule of \(M \) and \(eA \subseteq A \) for all \(e^2 = e \in \text{End}_R(M) \) then \(\frac{M}{A} \) is pure–supplemented. In particular for every fully invariant submodule \(Y \) of \(M \), \(\frac{M}{Y} \) is pure – supplemented.

Proof: Let \(D \) is a direct summand of \(M \) consider the projection map \(e : M \rightarrow D \) then \(e^2 = e \in \text{End}_R(M) \), \(eA \subseteq A \) and hence \(eA = A \cap D \). Since \(D \) is a direct summand of \(M \) then \(M = D \oplus K \), \(K \leq M \) hence \(A = (A \cap D) \oplus (A \cap K) \) now \(\frac{D + A}{A} = \frac{D \oplus (A \cap K)}{A} \) and \(K + A = \frac{K \oplus (A \cap D)}{A} \) hence \(\frac{K + A}{A} \) is direct summand of \(\frac{M}{A} \) then is pure in \(\frac{M}{A} \) and by (prop. 1.10) \(\frac{M}{A} \) is pure–supplemented.

2–Completely pure–supplemented Modules

We call a module \(M \) is completely pure–supplemented module if every direct summand of \(M \) is pure–supplemented.

Proposition 2.1: Every lifting is completely pure–supplemented module.

Proof: Let \(M = D \oplus K \) for some \(K \) submodule of \(M \).

\[\frac{M}{A} = \frac{D}{A} \oplus \frac{K}{A} \]
Then \(\frac{M}{A} = \frac{D}{A} \oplus \frac{K}{A} \) and \(A = A \cap (D \cap K) = (A \cap D) \cap (A \cap K) \) then \(\frac{M}{A} = \frac{D}{A} \oplus \frac{K}{A} \).

Hence \(\frac{K + A}{A} \) is direct summand of \(\frac{M}{A} \) then is pure in \(\frac{M}{A} \) and by (prop. 1.10) \(\frac{M}{A} \) is pure–supplemented.

Proposition 2.2:

Let \(M \) be pure–supplemented module and \(M \) has \(\text{PSP} \) then \(M \) is completely pure–supplemented module.

885
Proof: Let N be a direct summand of M. We show that N is pure-supplemented. \(M = N \oplus K \) and \(K \leq M \) assume P is pure in M. Then by assumption \(N + P \) pure in M, \(M = N + P \) is pure-supplemented (prop. 1.10), but \(M = N + P \). Therefore, N is pure-supplemented module.

Proposition 2.3: If an R-module M has PSP and \(M = M_1 \oplus M_2 \) is duo module, then M is pure-supplemented iff \(M_1 \) and \(M_2 \) are pure-supplemented modules.

Proof: \(\Rightarrow \) Since \(M_1 \) and \(M_2 \) are fully invariant submodules, hence \(M_1 \) and \(M_2 \) are pure-supplemented modules (coro. 1.12).

\(\Leftarrow \) Assume \(M_1 \) and \(M_2 \) are pure-supplemented modules and let \(L \leq M \) then there exist a pure submodule \(P_1 \) of M such that \(M_1 = (L \cap M_1) + X \) iff \(M_1 = P_1 + X \) for any submodule \(X \) of \(M_1 \). And there exist a pure submodule \(P_2 \) of M such that \(M_2 = (L \cap M_2) + Y \) iff \(M_2 = P_2 + Y \) for any submodule \(Y \) of \(M_2 \).

Claim \(M = (P_1 \oplus P_2) + Z \) iff \(M = L + Z \) for any submodule Z of M. Assume \(M = (P_1 + P_2) + Z \) then \(M_1 = P_1 + (M_1 \cap (P_2 + Z)) = (L \cap M_1) + (M_1 \cap (P_2 + Z)) = M_1 \cap [(L \cap M_1) + (P_2 + Z)] \) then \(M_1 \leq (L \cap M_1) + Z \), since \(m_1 \in M \).

\(m_1 = x + a_2 + z \) where \(a_2 \in P_2, x \in L \cap M_1, z \in Z \) since \(Z = (Z \cap M_1) \oplus (Z \cap M_2) \) then \(z = z_1 + z_2 \) where \(z_1 \in Z \cap M_1 \) and \(z_2 \in Z \cap M_2 \) clearly \(m = x + z_1 \) then \(M_1 \leq (L \cap M_1) + Z \) Similarly \(M_2 \leq (L \cap M_2) + Z \) then \(M = (L \cap M_1) + (L \cap M_2) + Z \) by modularity \(M_1 = (L \cap M_1) + [M_1 \cap (L \cap M_2) + Z] \) then \(M_1 = P_1 + [M_1 \cap (L \cap M_2) + Z] = M_1 \cap [P_1 + (L \cap M_2) + Z] \) (modular low) then \(M_1 \leq [P_1 + (L \cap M_2) + Z] \) hence \(M_1 \leq P_1 + Z \). In the same way \(M_2 \leq P_2 + Z \) then \(M = (P_1 + P_2) + Z \), \(P_1 + P_2 \) is pure (sum of two pure is pure) PSP.

References:

