On Intuitionistic Fuzzy bi-Ideal With respect To an Element of a near Ring

Showq Mohammed Ebrahim*
Department of Mathematics, College of Education for Girls, AL Kufa University, Al-Kufa, Iraq

Abstract
In this paper we introduce the notions of bi-ideal with respect to an element r denoted by \((r-bi-ideal)\) of a near ring, and the notion fuzzy bi-ideal with respect to an element of a near ring and the relation between F-r-bi-ideal and r-bi-ideal of the near ring, we studied the image and inverse image of r-bi-ideal under epimorphism, the intersection of r-bi-ideals and the relation between this ideal and the quasi ideal of a near ring, also we studied the notion intuitionistic fuzzy bi-ideal with respect to an element r of the near ring \(N\), and give some theorem about this ideal.

Keywords: Near ring, ideal of a near ring, bi-ideal, quasi-ideal, P-regular of near ring, intuitionistic fuzzy, intuitionistic fuzzy bi-ideal.

Introduction
The notion of near ring is first define by G. Pliz [1] in 1983, the notion of bi-ideal interfused by N. Ganesan [2], in 1986 the notion intuitionistis fuzzy sets denoted by K.T. Atanassov [3], in 1987 T.T. Chelvam, N. Ganesan denoted the notion bi-ideals of near-rings, in 1997 the notion Fuzzy Ideal denoted by D.T.K, and Biswas[4], in 2012 the notion P-regular near ring denoted by Aphisit in [5].

1. Preliminaries
In this section we give some concepts that we need.

Definition (1.1) [1]
A left near ring is a set \(N\) together with two binary operations “+” and “.” such that
(1) \((N,+)\) is a group (not necessarily abelian)
(2) \((N,.)\) is a semigroup.
(3) \((n_1 + n_2) \cdot n_3 = n_1 \cdot n_3 + n_2 \cdot n_3\)
For all \(n_1, n_2, n_3, \in N\),

Definition (1.2) [6]:
Let \(N\) be a near ring. A normal subgroup \(I\) of \((N,+)\) is called a left ideal of \(N\) if

*Email: mshowq@yahoo.co.uk
(1) \(I \cdot N \subseteq I \).
(2) \(\forall n, n_i \in N \) and for all \(i \in I \), \((n_i + i) \cdot n - n_i \in I \)

Definition (1.3) \([7]\)

Let \((N_1,+,\cdot)\) and \((N_2,+,\cdot)\) be two near rings. The mapping \(f : N_1 \to N_2 \) is called a near ring homomorphism if for all \(m, n \in N_1 \)

\[
f(m + n) = f(m) + f(n) \quad f(m \cdot n) = f(m) \cdot f(n).
\]

Theorem (1.4) \([5]\)

Let \(f : (N_1,+,\cdot) \to (N_2,+,\cdot) \) be a near ring homomorphism.

1. If \(I \) is an ideal of a near ring \(N_1 \), then \(f(I) \) is an ideal of \(N_2 \).
2. If \(J \) is an ideal of a near ring \(N_2 \), then \(f^{-1}(J) \) is an ideal of the near ring \(N_1 \).

Definition (1.5) \([8]\)

A nonempty subset \(Q \) of a near ring \(N \) is called a quasi ideal of \(N \) if

1. \(Q \) together with addition is a subgroup of \(N \).
2. \(Q \subseteq Q \cap N \).

Definition (1.6) \([2]\)

A nonempty subset \(B \) of a near ring \(N \) is called a bi-ideal of \(N \) if

1. \(B \) together with addition is a subgroup of \(N \).
2. \(B \subseteq B \cap B \).

Definition (1.7) \([9]\)

Let \(N \) be a near ring with unity and \(P \) an ideal of \(N \). Then \(N \) is said to be \(P \)-regular near ring if for each \(x \in N \), there exists \(y \in N \) such that \(xy - x \in P \).

Definition (1.8) \([10]\)

A near ring \(N \) is called a distributive near ring if

\[
ac + bc = ab + ac \quad \text{for all} \quad a, b, c \in N.
\]

Theorem (1.9) \([11]\)

Let \(N \) be a \(P \)-regular near ring. Then for each \(n \in N \), there exists \(n' \in N \) such that \(n' n \in P \).

Theorem (1.10) \([11]\)

Let \(N \) be a \(P \)-regular distributive near ring. Then for every left ideal \(L \) and right ideal \(R \) of \(N \),

\[
(P + R) \cap (P + L) = P + RL.
\]

Definition (1.11) \([2]\)

Let \(N \) be a non-empty set. A mapping \(\mu : N \to [0,1] \) is called a fuzzy subset of \(N \), where \([0,1]\) is a closed interval of real numbers.

Definition (1.12) \([4]\)

Let \(\mu \) be a non-empty fuzzy subset of a near ring \(N \), that is \(\mu(y) \neq 0 \) for some \(y \in N \) then \(\mu \) is said to be fuzzy ideal of \(N \) if it satisfies the following conditions:

1. \(\mu(z - y) \geq \min\{\mu(z), \mu(y)\} \);
2. \(\mu(z + y) \geq \min\{\mu(z), \mu(y)\} \);
3. \(\mu(y + z - y) \geq \mu(z) \);
4. \(\mu(z, y) \geq \mu(y), \forall y, z \in N \).

When the subset of \(N \) satisfies 1, 2 is called fuzzy sub near ring.

Definition (1.13) \([3]\)

An intuitionistic fuzzy set \(A \) in a non-empty set \(X \) is an object having the form

\[
A = \{(x, \mu_A(x), \lambda_A(x))| x \in X \},
\]

where the functions \(\mu_A : X \to [0,1] \) and \(\lambda_A : X \to [0,1] \) denote the degree of membership and the degree of non-membership of each element \(x \in X \) to the set \(A \), respectively, and \(0 \leq \mu_A(x) + \lambda_A(x) \leq 1 \) for all \(x \in X \).
Definition (1.14)[3]
An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in N is an intuitionistic fuzzy subnear ring of N if for $x, y \in N$

1. $\mu_A(x - y) \geq \min \{\mu_A(x), \mu_A(y)\}$
2. $\mu_A(xyz) \geq \min \{\mu_A(x), \mu_A(z)\}$
3. $\lambda_A(x - y) \leq \max \{\lambda_A(x), \lambda_A(y)\}$
4. $\lambda_A(xyz) \leq \max \{\lambda_A(x), \lambda_A(z)\}$

Proposition (1.15)[1]
Let X be a non-empty set. A mapping $\mu : N \rightarrow [0,1]$ is a fuzzy set in X, the complement of μ, denoted by μ^c, is the fuzzy set in X given by $\mu^c(x) = 1 - \mu(x)$ for all $x \in N$ for any $I \subseteq X$, X_I denotes the characteristic function of I.

For any fuzzy set μ and $h \in [0,1]$, we define two sets, $\bigcup(\mu, h) = \{x \in X | \mu(x) \geq h\}$ and $L(\mu, h) = \{x \in X | \mu(x) \leq h\}$ Which are called upper and lower h-level cut of μ respectively, and can be used to characterize μ.

2. bi-ideal with respect to an element of a near ring N

In this section we devoted to study bi-ideal with respect to an element r of a near ring N and give some properties, theorem about this ideal.

Definition (2.1)
A nonempty subset B of a near ring N is called a bi-ideal with respect to an element r of N and denoted by r-bi-ideal of a near ring if
1. B together with addition is a subgroup of N.
2. $r.BNB \subseteq r.B$, $r \in N$.

Example (2.2).
Let $N = \{0, a, b, c\}$ be the near ring defined by Cayley

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>A</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>B</td>
<td>C</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>C</td>
<td>B</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Then $B = \{0, a\}$ is b-bi-ideal since $b.BNB \subseteq b.B$.

Remark (2.3)
If B_1 and B_2 be two r-bi-ideal of near ring N, then B_1, B_2 of N may be not r-bi-ideal.

Example (2.4)
Consider the near ring $N = \{0, a, b, c\}$ with addition and multiplication defined by the following tables.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Let $B_1 = \{0, 3\}$ and $B_2 = \{1, 2, 3\}$ are two 3-bi-ideal of N but $B_1 \cap B_2 = \{3\}$ is not two 3-bi-ideal of N.

Remark (2.5)
Not all r-bi-ideal of a near ring are bi-ideal of N.

Example (2.6)
Consider the near ring N in example (2.2) let $B = \{0, b\}$ be b-bi-ideal but B is not bi-ideal of N since $BNB \not\subseteq B$.
Theorem (2.7)
Let \((N_1,+,..,')\) and \((N_2,+,..,')\) be two near rings, \(f : N_1 \rightarrow N_2\) be an epimorphism and \(B\) be a \(r\)-bi-ideal of \(N_1\). Then \(f(B)\) is a \(r\)-bi-ideal of \(N_2\).

Proof
Let \(B\) be a \(r\)-bi-ideal of \(N_1\), \(f(B)\) is a subgroup of \(N_2\) to prove \(f(B)\) is an \(r\)-bi-ideal of \(N_2\).

\[
f(B) \subseteq rB \text{ Since } B \text{ is an } r\text{-bi-ideal of } N_1
\]
\[
f(r).f(B) = f(r).f(N_1) = f(r).f(B)
\]
\[
f(r).f(B) \subseteq f(r).f(B)
\]
\[
f(B) \text{ is } f(r)\text{-bi-ideal of } N_2
\]

Theorem (2.8)
Let \((N_1,+,..,')\) and \((N_2,+,..,')\) be two near rings, and \(f : N_1 \rightarrow N_2\) be an epimorphism and \(J\) be a \(f(r)\)-bi-ideal of \(N_2\). Then \(f^{-1}(J)\) is a \(r\)-bi-ideal of \(N_1\), where \(y = f(r)\), \(\ker f \subseteq f^{-1}(J)\).

Proof
Let \(r \in N_1\), \(f^{-1}(J)\) is a subgroup of \(N_1\)
\[
y'.J N_2^2 \subseteq y'.J
\]
\[
f^{-1}(y'.J N_2^2) = f^{-1}(y'.J)
\]
\[
f^{-1}(y).f^{-1}(J)f^{-1}(N_2)f^{-1}(J) \subseteq f^{-1}(y).f^{-1}(J)
\]
\[
r.f^{-1}(J)N_2^2 \subseteq r.f^{-1}(J)
\]
\[
J \text{ is a r-bi-ideal of } N_1
\]

Remark (2.9)
Not all \(r\)-bi-ideals of the near ring \(N\) are quasi ideal.

Example (2.10)
Let \(N = \{0,a,b,c\}\) be the near ring defined by caleys

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>A</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>B</td>
<td>C</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>C</td>
<td>B</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Let \(B = \{0,a\}\) is \(c\)-bi-ideal since \(c.BNB \subseteq c.B\) but is not quasi ideal.

Theorem (2.11)
Let \(N\) be a \(P\)-regular near ring and \(B\) a \(r\)-bi-ideal of \(N\). Then every \(y \in B\) there exist \(p' \in P\) and \(b' \in B\) such that \(y = p' + b'\).

Proof
Let \(N\) be a \(P\)-regular near ring and \(B\) a \(r\)-bi-ideal of \(N\) and \(y \in B \subseteq N\), there exists \(z \in N\) such that \(r(zy) - y = p\) for some \(p \in P\) thus \(y = -p + r(zy)\) since \(B\) is \(r\)-bi-ideal of \(N\) we have \(r(zy) \in rBNB \subseteq rB\) since \(P \in P\) together with addition is a subgroup of \(N\) we have \(-p \in P\) put \(p' = -p\) and \(b' = r(zy)\) thus \(y = -p + r(zy) = p' + b' \in P + B\).

Theorem (2.12)
Let \(N\) be a \(P\)-regular distributive near ring and let \(B_1, B_2\) are \(r\)-bi-ideals of \(N\). if \(b \in B_1 \cap B_2\) and \(y \in N\), then the element \(b\) can be represented as \(b = p + rh_1 y_1 b_2\) and \(b_1 y_1 b_2 y P \subseteq P\) for some \(p \in P\), \(r, y_i \in N, b_i \in B_i\) and \(b_2 \in B_2\).
Proof
Let \(b \in B_1 \cap B_2 \) since \(N \) is a \(P \)-regular near ring there exists \(y_1 \in N \) such that \(rby_1b - b \in P \) since \(b \in B_1 \cap B_2 \) by theorem (1.9) we have \(b = p_1 + b_1 \) for some \(p_1 \in P \) and \(b_1 \in B \). \(b = p_2 + b_2 \) for some \(p_2 \in P \) and \(b_2 \in B \) since \(rby_1b - b \in P \), we have \(rby_1b - b = p_3 \) for some \(p_3 \in P \) Thus \(b = -p_3 + rby_1b \). Hence
\[
= -p_3 + r(p_1 + b_1)y_1(p_2 + b_2) \\
= -p_3 + rp_1y_1p_2 + rp_1y_1b_2 + rh_1y_1p_2 + rh_1y_1b_2 \text{ since } P \text{ is an ideal of } N , t
\]
Then
\[
-p_3, rp_1y_1p_2, rp_1y_1b_2, rh_1y_1p_2, rh_1y_1b_2 \in P \\
\]
For some \(p_4 \in P \). Thus \(b = p_4 + rh_1y_1b_2 \)
So \(rh_1y_1b_2 = b - p_4 \) hence
\[
= b \in P \subseteq P \subseteq P.
\]

3-Intuitionistic fuzzy bi-ideal with respect to an element of a near ring

In this section we devoted to study fuzzy bi-ideal with respect to an element of a near ring \(N \), we introduce the notion intuitionist fuzzy bi-ideal with respect to an element of the near ring \(N \), and give some properties, theorem about this ideals.

Definition (3.1)
A fuzzy set \(\mu \) of a near ring is called fuzzy bi-ideal with respect to an element of a near ring \(N \) if
1. \(\mu(r(x - y)) \geq \min \{ \mu(rx), \mu(ry) \} \)
 \[\forall x, y \in N, r \in N. \]
2. \(\mu(r(xyz)) \geq \min \{ \mu(rx), \mu(rz) \} \)
 \[\forall x, y, z \in N, r \in N. \]
It denoted by \(F-r-bi-ideal \) of \(N \).

Example (3.2)
Consider the near ring \(N= \{0,1,2,3\} \)
With addition and multiplication defined by the following tables.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>.</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The fuzzy subset \(\mu \) of \(N \) which is defined by
\[
\mu(y) = \begin{cases}
0.9 & \text{if } y = 0,1 \\
0 & \text{otherwise}
\end{cases}
\]
\(\mu \) is \(F-2-bi-ideal \) of \(N \)

Definition (3.3)
An intuitionistic fuzzy set \(A = (\mu_A, \lambda_A) \) in \(N \) is an intuitionistic fuzzy bi-ideal with respect to an element \(r \) of \(N \) if for all \(x, y, z \in N, r \in N \),
(1) \(\mu_A(r(x - y)) \geq \min \{ \mu_A(rx), \mu_A(ry) \} \)
(2) \(\mu_A(r(xy z)) \geq \min \{ \mu_A(rx), \mu_A(rz) \} \)
(3) \(\lambda_A(r(x - y)) \leq \max \{ \lambda_A(rx), \lambda_A(ry) \} \)
(4) \(\lambda_A(r(xy z)) \leq \max \{ \lambda_A(rx), \lambda_A(rz) \} \)

Theorem (3.4)
An intuitionistic fuzzy set \(A = (\mu_A, \lambda_A) \) in \(N \) is an intuitionistic F-r- bi-ideal of \(N \) if and only if the fuzzy set \(\mu_A \) and \(\lambda_A \) are F-r- bi-ideal of \(N \).

Proof
If \(A = (\mu_A, \lambda_A) \) is an intuitionistic F-r- bi-ideal of \(N \), then clearly \(\mu_A \) is a F-r- bi-ideal of \(N \), for all \(x, y \in N \),
\[
\lambda_A^c(r(x - y)) = 1 - \lambda_A^c(r(x - y))
\]
\[
\geq 1 - \max \{ \lambda_A^c(rx), \lambda_A^c(ry) \}
\]
\[
= \min \{ 1 - \lambda_A^c(rx), 1 - \lambda_A^c(ry) \}
\]
\[
= \min \{ \lambda_A^c^c (rx), \lambda_A^c^c (ry) \} , \forall x, y \in N, r \in N,
\]

\[
\lambda_A^c(r(xy z)) = 1 - \lambda_A^c(r(xy z))
\]
\[
\geq 1 - \max \{ \lambda_A^c(rx), \lambda_A^c(rz) \}
\]
\[
= \min \{ 1 - \lambda_A^c(rx), 1 - \lambda_A^c(rz) \}
\]
\[
= \min \{ \lambda_A^c^c (rx), \lambda_A^c^c (rz) \}
\]

thus \(\lambda_A^c \) is a F-r- bi-ideal of \(N \). Conversely that \(\mu_A^c \) and \(\lambda_A^c \) are F-r- bi-ideal of \(N \), then clearly the conditions 1,2 of definition (3.3) are valid. Now for all \(x, y \in N, r \in N \),
\[
1 - \lambda_A^c(r(x - y)) = \lambda_A^c(r(x - y))
\]
\[
= \min \{ \lambda_A^c^c (rx), \lambda_A^c^c (ry) \}
\]
\[
= 1 - \max \{ \lambda_A^c^c (rx), \lambda_A^c^c (ry) \}
\]

therefore \(\lambda_A^c(r(x - y)) \leq \max \{ \lambda_A^c(rx), \lambda_A^c(ry) \} \) \(\forall x, y, z \in N, r \in N \),
\[
1 - \lambda_A^c(r(xy z)) = \lambda_A^c(r(xy z))
\]
\[
\geq \min \{ \lambda_A^c^c (rx), \lambda_A^c^c (rz) \}
\]
\[
= 1 - \max \{ \lambda_A^c^c (rx), \lambda_A^c^c (rz) \}
\]

therefore \(\lambda_A^c(r(xy z)) \leq \max \{ \lambda_A^c(rx), \lambda_A^c(rz) \} \)

Thus \(A = (\mu_A, \lambda_A) \) is an intuitionistic F-r- bi-ideal of \(N \).

Theorem (3.5)
An intuitionistic fuzzy set \(A = (\mu_A, \lambda_A) \) in \(N \), is an intuitionistic F-r- bi-ideal of \(N \) if and only if \(A = (\mu_A, \mu_A^c) \) and \(A = (\lambda_A^c, \lambda_A) \) are intuitionistic F-r- bi-ideal of \(N \).

Proof
If \(A = (\mu_A, \lambda_A) \) is an intuitionistic F-r- bi-ideal of \(N \), then \(\mu_A = (\mu_A^c)^c \) and \(\lambda_A^c \) are F-r- bi-ideal of \(N \), from theorem (3.4). Therefore \(A = (\mu_A, \mu_A^c) \) and \(A = (\lambda_A^c, \lambda_A) \) are intuitionistic F-r- bi-ideal of \(N \).
Conversely if \(A = (\mu_A, \lambda_A) \), \(A = (\lambda_A, \lambda_A) \) are intuitionistic \(F_r \)- bi-ideal of \(N \), then the fuzzy sets \(\mu_A \) and \(\lambda_A \) are \(F_r \)-bi-ideal of \(N \), therefore \(A = (\mu_A, \lambda_A) \) is intuitionistic \(F_r \)-bi-ideal of \(N \).

Proposition (3.6)

An intuitionistic fuzzy set \(A = (\mu_A, \lambda_A) \) in \(N \) is a \(F_r \)-bi-ideal of \(N \) if and only if all non-empty set \(\cup (\mu_A, h) \) and \(\cap (\lambda_A, t) \) are \(r \)-bi-ideal of \(N \) for all of \(A \in \text{Im}(\mu_A) \) and \(t \in \text{Im}(\lambda_A) \) respectively .

Proof

Suppose that \(A = (\mu_A, \lambda_A) \) is an intuitionistic \(F_r \)-bi-ideal of \(N \), for \(x, y \in \cup (\mu_A, h) \), we have \(\mu_A (r(x - y)) \geq \min \{\mu_A (rx), \mu_A (ry)\} \geq h \)

Therefore \(r(x - y) \in \cup (\mu_A, h) \) let \(x, z \in \cup (\mu_A, h) \) and \(y \in N \).then \(\mu_A (r(xyz)) \geq \min \{\mu_A (rx), \mu_A (rz)\} \geq h \) and so \(r(xyz) \in \cup (\mu_A, h) \) hence \(\cup (\mu_A, h) \) is a \(r \)-bi-ideal of \(N \).

For all \(h \in \text{Im}(\mu_A) \).similarly we can show that \(\cup (\lambda_A, t) \) is also a \(r \)-bi-ideal of \(N \) for all \(t \in \text{Im}(\lambda_A) \).Conversely suppose that \(\cup (\mu_A, h) \) and \(\cup (\lambda_A, t) \) are \(r \)-bi-ideal of \(N \) for all \(h \in \text{Im}(\mu_A) \) and \(t \in \text{Im}(\lambda_A) \) respectively .Suppose that \(x, y \in N \) and \(\mu_A (r(x - y)) \leq \min \{\mu_A (rx), \mu_A (ry)\} \)

Choose \(h \) such that \(\mu_A (r(x - y)) < h < \min \{\mu_A (rx), \mu_A (ry)\} \) Then we get \(x, y \in \cup (\mu_A, h) \) but \(r(x - y) \not\in \cup (\mu_A, h) \) a contradiction. Hence \(\mu_A (r(x - y)) \geq \min \{\mu_A (rx), \mu_A (ry)\} \).

A similar argument shows that \(\mu_A (r(xyz)) \geq \min \{\mu_A (rx), \mu_A (rz)\} \)

For all \(x, y, z \in N \).likewise we can show that

\[
\lambda_A (r(x - y)) \leq \max \{\lambda_A (rx), \lambda_A (ry)\}
\]

\[
\lambda_A (r(xyz)) \leq \max \{\lambda_A (rx), \lambda_A (rz)\}
\]

Hence \(A = (\mu_A, \lambda_A) \) is an intuitionistic \(F_r \)-bi-ideal of \(N \).

Theorem (3.7)

A non empty set \(B \) of \(N \) is \(r \)-bi-ideal of \(N \) if and only if \(A = (\chi_B, \chi_B^c) \) is an intuitionistic \(F_r \)-bi-ideal of \(N \).

Proof

Straight forward.

References