Microscopic calculations of effective charges and quadrupole transition rates in Si, S and Ar isotopes.

R. A. Radhi, A. H. Ali*
Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract.
Quadrupole transition rates and effective charges are calculated for even-even Si, S and Ar isotopes based on \(sd\) and \(sdpf\) -shell model spaces. Shell model calculations are performed with \(sd\) shell-model space for neutron number \((N) \leq 20\) and \(sdpf\) shell-model space for \(N > 20\). Excitation out of major shell space are taken into account through a microscopic theory which allows particle-hole excitation from the core and model space orbits to all higher orbits with \(2\hbar\omega\) excitation. Effective charges are obtained for each isotope. The results show a systematic increase in the \(B(E2)\) values for \(N \geq 20\). Shell model calculation predicts the erosion of the \(N=28\) magicity in the neutron rich \(^{42}\)Si. No clear indications about the erosion of the shell gap closure in \(^{44}\)S and \(^{46}\)Ar isotope.

Keywords: Shell models calculations; Effective charges; Quadrupole transition rates.

1. Introduction
Neutron-rich nuclei far from stability line provide an attractive testing ground of nuclear structure studies. They have been extensively investigated because their exotic properties which are different from those of stable nuclei. In the last two decades, development of experiments with a secondary radioactive ion beam has extensively helped the studies on light neutron-rich nuclei. One of the most striking features in neutron-rich nuclei is the nuclear deformation. The deformation can be investigated experimentally and theoretically, through their electromagnetic transitions. The general trend of the \(2^+\) excitation energy \(E_x(2^+)\) and the reduced electric quadrupole transition strength \(B(E2; 0^+ \rightarrow 2^+)\) for even-even nuclei are expected to be inversely proportional to one another [1]. Recent theoretical
studies and experimental data have questioned the persistence of the traditional magic numbers, and revealed that the $N = 28$ shell gap is eroded when moving away from the stability line. The experimental data for the 44Si and 42Si isotopes indicate a clear breaking of the $N = 28$ magicity because of the observed small 2^+ energy [2–4]. It is now established that the shell gaps in nuclei evolve with the proton and/or neutron degrees of freedom, leading to vanishing shell closures or appearance of new magic numbers. Measurements of the energy of the first 2^+ state, E_2 (2$^+$) and the absolute $B(E2; 0^+_1 \rightarrow 2^+_1)$ quadrupole excitation strength provide the necessary information about the persistence or break down of the shell gap. Coulomb excitation measurements [5] showed that 40,42,44Si are collective with high $B(E2)$ values. Lifetimes of low-lying excited states of the neutron-rich 44,46Ar nuclei have been measured by Mangoni et al. [6], which show the increase in the deduced $B(E2)$ transition probability from 44Ar to the closed-shell nucleus 46Ar which contradicts the earlier results of Coulomb-excitation experiments [3,7]. Shell-model calculations using the standard effective charges $e_\pi = 1.5e$ and $e_\nu = 0.5e$ have been used [6] which agree with their measured values. Kaneko et al. [8] calculated the $B(E2)$ values of even-even neutron rich Si, S and Ar isotopes, using the monopole interaction (EPQQM) in the sd-pf valence space. In their calculation, they adopted the effective charges $e_\pi = 1.15e$ and $e_\nu = 1.35e$ for Si and $e_\nu = 0.5e$ for S and $e_\pi = 1.5e$ and $e_\nu = 0.5e$ for Ar isotopes. The quadrupole vibrational modes of neutron-rich $N=28$ isotones (48Ca, 46Ar, 44Si and 42Si) were investigated by using the canonical-bases time-dependent Hartree-Foch-Bogoliubov theory [9]. Nuclear mass measurements of 48Ar and 49Ar [10] provide strong evidence for the closed shell nature of neutron number $N= 28$ in argon, which is therefore the lowest even-Z element exhibiting the $N=28$ closed shell.

Shell model within a restricted model space is not appropriate to describe $E2$ moments and transitions for stable nuclei. The electromagnetic properties can be supplemented to the usual shell model treatment by allowing excitation from the core and model space orbits into higher orbits. A perturbative theory treatment was made of core-polarization effects in electromagnetic and inelastic electron scattering transitions due to high-lying collective excitation, which showed that there was a natural disparity in neutron and proton polarizations [11]. The conventional approach to supplying this added ingredient to shell model wave functions is to redefine the properties of the valence nucleons from those exhibited by actual nucleons in free space to model-effective values [12]. Effective charges are introduced for evaluating $E2$ transitions in shell-model studies to take into account effects of model-space truncation. A systematic analysis has been made for observed $B(E2)$ values with shell-model wave functions using a least-squares fit with two free parameters gave standard proton and neutron effective charges, $e_\pi = 1.3e$ and $e_\nu = 0.5e$ [13], in sd-shell nuclei. It was well established that the $B(E2)$ values which are obtained in the sd model space calculations and the associated $C2$ form factors through the first maximum, are too small by about a factor of 3 [14]. The primary reason for this is that the "giant resonance" excitation operators coupled coherently with low lying states. Joseph et al. [15] discussed the reliability of the determination of neutron and proton effective charges in nuclear collective models from experimental effective neutron and proton matrix elements of the 0^+ to 2^+ transitions. Effective charge models were presented for ground states of odd-even and doubly odd nuclei and for $J^\pi = 2^+$ first excited states of doubly even sd-shell nuclei, to calculate the quadrupole moments of $A=17$-39 nuclei [16]. A two parameter least-square fit of the shell model densities to the $E2$ of $A=17$-39 nuclei yielded values of $e_\pi = 1.29e$ and $e_\nu = 0.49e$ [17]. The least-square fit for the effective charges $e_\pi = 1.36(5)e$ and $e_\nu = 0.45(5)e$ were used to calculate $M1$ and $E2$ moments and transition matrix elements, Gamow-Teller β-decay matrix elements, and spectroscopic factors for sd-shell nuclei from $A = 17$ to $A = 39$ [18]. The role of the core and the truncated space can be taken into consideration through a microscopic theory, which allows one particle–one hole ($1p$–$1h$) excitation of the core and also of the model space to describe these $E2$ properties. These effects provide a more practical alternative for calculating nuclear collectivity. These effects are essential in describing transitions involving collective modes such as $E2$ transition between states in the ground-state rotational band, such as in 18O [19].

In the present work, we will adopt shell model with harmonic oscillator (HO) single particle wave functions to calculate the $E2$ transition rates of even-even Si, S and Ar isotopes. The sd model space will be used for neutron number $N \leq 20$, which covered the orbits $1d_{5/2}$, $2s_{1/2}$ and $1d_{3/2}$ and sd-pf model
space for $N > 20$ with full sd valence space for Z-8 protons and full fp valence space for N-20 neutrons.

One particle- one hole ($1p-1h$) excitation from the core and model space will be taken into consideration through first-order perturbation theory. These $1p-1h$ excitation from the core and model space orbits are considered into all higher allowed orbits with $2\hbar\omega$ excitation. Excitation up to $2\hbar\omega$ are found to be enough for sufficient convergence. These excitations are essential in obtaining a reasonable description of the data.

2. Theory

The one-body electric multipole transition operator with multipolarity J for a nucleon is given by [20]

$$\hat{O}_{jm}(\vec{r}) = t_{j}^{*} Y_{jm}(\Omega_{k}),$$

(1)

The reduced electric matrix element between the initial and final states is

$$M(EJ) = \left\langle J_{f} \parallel \sum_{k} e(k) \hat{O}_{j} (\vec{r})_{k} \parallel J_{i} \right\rangle,$$

(2)

where k is the electric charge for the k-th nucleon. Since $e(k) = 0$ for neutron, there should appear no direct contribution from neutrons; however, this point requires further attention: The addition of a valence neutron will induce polarization of the core into configurations outside the adopted model space. Such core polarization effect is included through perturbation theory which gives effective charges for the proton and neutron. The reduced electric matrix element can be written in terms of the proton and neutron contributions

$$M(EJ) = \sum_{t_{i}} e(t_{i}) \left\langle J_{f} \parallel \hat{O}_{j} (\vec{r}, t_{i}) \parallel J_{i} \right\rangle,$$

(3)

where $t_{i} = 1/2$ for a proton and $t_{i} = -1/2$ for a neutron and $\left\langle J_{f} \parallel O_{j} (\vec{r}, t_{i}) \parallel J_{i} \right\rangle$, which is expressed as the sum of the products of the one-body density matrix (OBDM) times the single-particle matrix elements,

$$\left\langle J_{f} \parallel O_{j} (\vec{r}, t_{i}) \parallel J_{i} \right\rangle = \sum_{j} OBDM(J_{i}, J_{f}, J_{i}, j, j') \left\langle J_{f} \parallel O_{j} (\vec{r}, t_{i}) \parallel j' \right\rangle,$$

(4)

where j and j' label single-particle states for the shell model space.

2. Theory

The role of the core and the truncated space can be taken into consideration through a microscopic theory, which combines shell model wave functions and configurations with higher energy as first order perturbation to describe EJ excitation; these are called core polarization effects. The reduced matrix elements of the electron scattering operator is expressed as a sum of the model space (MS) contribution and the core polarization (CP) contribution, as follows:

$$M(EJ) = \sum_{i} e(t_{i}) \left\langle J_{f} \parallel \hat{O}_{j} (\vec{r}, t_{i}) \parallel J_{i} \right\rangle \left[OBDM(J_{i}, J_{f}, J_{i}, j, j') + e(f_{j}) \left\langle J_{f} \parallel \Delta \hat{O}_{j} (\vec{r}, t_{i}) \parallel J_{i} \right\rangle_{CP} \right].$$

(5)

Similarly, the CP electric matrix element is expressed as the sum of the products of the one-body density matrix (OBDM) times the single-particle matrix elements,

$$\left\langle J_{f} \parallel \Delta \hat{O}_{j} (\vec{r}, t_{i}) \parallel J_{i} \right\rangle = \sum_{j} OBDM(J_{i}, J_{f}, J_{i}, j, j') \left\langle J_{f} \parallel \Delta \hat{O}_{j} (\vec{r}, t_{i}) \parallel j' \right\rangle.$$

(6)

The single-particle matrix element of the CP term is

$$\left\langle j \parallel \Delta \hat{O}_{j} \parallel j' \right\rangle = \left\langle j \parallel \hat{O}_{j} E_{f} - H_{0} V_{res} \parallel j' \right\rangle + \left\langle j \parallel V_{res} E_{f} - H_{0} \hat{O}_{j} \parallel j' \right\rangle,$$

(7)

where the operator \hat{Q} is the projection operator onto the space outside the model space. The single particle core-polarization terms given in equation (7) are written as [20]

$$\left\langle j \parallel \Delta \hat{O}_{j} \parallel j' \right\rangle = \sum_{\rho \rho' \lambda \lambda'} \left(\frac{(-1)^{\rho_{1} + j_{1} + \lambda}}{E_{j_{1}} - E_{j_{2}} + \epsilon_{\rho} + \epsilon_{\rho'}} \right) \left(\frac{2 \lambda + 1}{j_{2} j_{1}} \right) \left\langle j \parallel \hat{O}_{j} \parallel j' \right\rangle \left(\frac{1 + \delta_{\rho_{1} \rho}}{1 + \delta_{\rho_{1} \rho'}}, \frac{1 + \delta_{\lambda \lambda'}}{1 + \delta_{\lambda \lambda'}} \right) \left\langle j \parallel \hat{O}_{j} \parallel j' \right\rangle.$$
+terms with \(j_1 \) and \(j_2 \) exchanged with an overall minus sign, where the index \(j_1 \) runs over particle states and \(j_2 \) over hole states and \(\epsilon \) is the single-particle energy.

For the residual two-body interaction \(V_{res} \), the two-body Michigan three range Yukawa (M3Y) interaction of Bertsch et al. [21] is adopted.

The electric matrix element can be represented in terms of only the model space matrix elements by assigning effective charges \(e_{eff} (t_z) \) to the protons and neutrons which are active in the model space,

\[
M(EJ) = \sum_{J} e_{eff} (t_z) \left\langle J_f \parallel \hat{O}_J (\tilde{r}, t_z) \parallel J_i \right\rangle_{MS}
\]

The effective nucleon charge can be obtained as follows

\[
e_{eff} (t_z) \left\langle J_f \parallel \hat{O}_J (\tilde{r}, t_z) \parallel J_i \right\rangle_{MS} = e(t_z) \left\langle J_f \parallel \hat{O}_J (\tilde{r}, t_z) \parallel J_i \right\rangle_{CP} + e(t_z) \left\langle J_f \parallel \Delta \hat{O}_J (\tilde{r}, t_z) \parallel J_i \right\rangle_{CP}
\]

where \(\delta e(t_z) \) is the nucleon polarization charge.

The reduced transition probability is defined as [20]

\[
B(EJ) = \frac{|M(EJ)|^2}{2J+1}
\]

3. Results and Discussion

Shell model calculations are performed with NuShellIX [22] with the \(sd \) model space for neutron number \(N \leq 20 \), which covered the orbits 1d_{3/2}, 2s_{1/2} and 1d_{3/2} and \(sdpf \) model space for \(N > 20 \). Results based on the \(sd \)-shell interactions USDB (universal \(sd \)-shell interaction B) for the \(sd \)-shell model space [23] and the \(sdpf \) interaction \(sdpf-u \) [24] for \(sdpf \) model space with valence (active) protons are restricted to the \(sd \) shell and N-20 neutrons to the \(pf \) shell. The 20 neutrons are frozen in s, p and sd-shells (full \(sd \) valence space for Z=8 protons and full \(fp \) valence space for N=20 neutrons).

The radial wave functions for the single-particle matrix elements were calculated with the harmonic oscillator (HO) potential with size parameters calculated for each isotope with mass number \(A \) as [12]

\[
b = \frac{\hbar}{\sqrt{2 \mu_{\omega} a}}, \quad \hbar \omega = 45A^{1/3} - 25A^{2/3}.
\]

Microscopic perturbed calculations have been performed for \(sd \)-shell nuclei to include configurations excluded by the model space which incorporate one-particle-one-hole excitation from the core and the model space orbits into all higher orbits with \(2\hbar \omega \) excitation. For \(N > 20 \), \(sdpf \) model space is used with average effective charges obtained from \(sd \)-shell model space for \(T_f \neq 0 \). Calculations for the reduced transition probabilities using effective charges deduced from core-polarization (CP) effects are presented for the transition \(0^+ \rightarrow 2^+_1 \) (\(B(E2)_{CP} \)) in Si, S and Ar isotopes and compared with the available experimental data given in Ref. [1]. Evidence on the coupling of the particle motion to the high-frequency quadrupole modes is provided by the \(E2 \) effective charge for low-energy transitions [25]. They formulated an expression for the effective charges to explicitly include neutron excess via

\[
e_{eff}(t_z) = e(t_z) + \delta e(t_z), \quad \delta e(t_z) = Z/A - 0.32(N - Z)/A - 2t_z[0.32 - 0.3(N - Z)/A].
\]

Calculations of \(B(E2) \) are also presented using these effective charges (\(B(E2)_{b,m} \)) for a comparison. Calculation of the reduced quadrupole deformation parameter is also presented for the isotopes considered in this work, which is defined as [5].

\[
\beta_e = 4\pi \left(\frac{B(E2)_{b,m} 0^+_1 \rightarrow 2^+_1}{Z(R_0^2 e)} \right)^{1/2}, \quad \text{where} \ R_0 = 1.2A^{1/3}
\]

3.1. \(^{30}\text{Si} \) isotopes

Reduced transition probabilities in units of \(e^2 \text{fm}^4 \) are calculated for Silicon Si isotopes (Z=14) with mass number \(A=26, 28, 30, 32, 34, 36, 38, 40, 42 \) and with neutron number \(N=12, 14, 16, 18, 20, 22, 24, 26, 28 \), respectively. The results of the \(B(E2)_{CP} \) and \(B(E2)_{b,m} \) are displayed in Table-1 and plotted in Figure-1.a as a function of \(N \) and \(A \) in comparison with the experimental values. Experimental
values are available for $^{34-42}$Si [26]. The $B(E2)_{\text{CP}}$ values are very well explained for $A = 28, 30, 34-42$. For 36Si, the calculated value underestimates the data by about a factor of 1.7. For $A = 32$, the calculated value of $B(E2)_{\text{CP}}$ slightly overestimates the measured value. Calculation of $B(E2)$ with B-M effective charges for $N < 20$, agree only with the measured value of $N = 12$ ($A = 26$). For $N \geq 20$, the $B(E2)_{\text{B-M}}$ values agree very well with the measured values and are close to our results. There are similarities in the behavior of the calculated and measured $B(E2)$ values as a function of mass number A, for $A = 28$ to $A = 38$.

Calculations of the excitation energies are compared with the experimental values and tabulated in Table-1 and plotted in Figure-1.b which shows a reasonable agreement except for the 34Si isotope, where the theoretical value overestimates the experimental one by about a factor of 1.6. The experimental value for 42Si is taken from Ref. [2], which provides evidence for the disappearance of $N = 28$ spherical closure. Figure-2 shows the level scheme of the 2^+ states of Si isotopes.

The minimum value for the $B(E2)$ value is obtained for $A = 34$ ($N = 20$) as shown in Figure-1.a which corresponds to the maximum excitation energy Figure-1.b, which confirms the magic property. For the magic number $N = 28$ ($A = 42$), the $B(E2)$ value is higher than those of $N \geq 20$, which corresponds to a minimum value of the excitation energy. This indicates the collapse of the $N = 28$ shell closure. If the last eight neutrons in 42Si fill the $f_{7/2}$ orbit, i.e. separating the $f_{7/2} - f_{5/2}$ orbit from the pf shells, the results of the $B(E2)$ and E_x are 169 e^2fm4 and 6.193 MeV, respectively. These results are close to those of $N = 20$ which indicate the occurrence of the magicity at $N = 28$. However, configuration- mixing shell model predicts the erosion of the $N = 28$ magicity in the neutron rich 42Si$_{28}$ isotope, which is confirmed experimentally. Collective behavior is gradually developed in neutron-rich isotopes between $N = 20$ and $N = 28$, where the reduced quadrupole deformation parameter is increased reaching a maximum at $N = 28$ and then decreased, as shown in Figure-3.a. The results show a rapid deformation development of Si isotopes from $N = 24$ to $N = 28$.

3.2. 40S isotopes

Reduced transition probabilities are calculated for S isotopes with mass number $A = 30, 32, 34, 36, 38, 40, 42, 44, 46$ and with neutron number $N = 14, 16, 18, 20, 22, 24, 26, 28, 30$, respectively. The results of the $B(E2)_{\text{CP}}$ and $B(E2)_{\text{B-M}}$ are displayed in Table-2 and plotted in Figure-4.a as a function of N and A in comparison with the experimental values. Our $B(E2)$ values underestimate the measured values for $N < 20$, and explain very well the measured values for $N \geq 20$. The $B(E2)$ values calculated with B-M effective charges agree very well with the measured values for all S-isotopes considered in this work, as shown in Figure-4.a.

Good agreement is obtained between the theoretical and experimental energy levels of the 2^+ states for all S isotopes considered in this work as shown in Table-2 and Figure-4.b. Figure-5 shows the level scheme of the 2^+_1 states of S isotopes.

The Calculated $B(E2)$ values show a decrease in quadrupole deformation with increasing neutron number, for $N \geq 14$, reaching a minimum value at $N = 20$ (4016S), and starts to increase reaching a maximum value at $N = 26$ (4016S). Collective behavior is gradually developed in neutron-rich isotopes between $N = 20$ and $N = 26$. Deformations of nuclei near 4028S are larger than in 4016S Figure-3.b.

3.7. 40Ar isotopes

Reduced transition probabilities are calculated for Ar isotopes with mass number $A= 34, 36, 38, 40, 42, 44, 46, 48$ and with neutron number $N= 16, 18, 20, 22, 24, 26, 28, 30$, respectively. The results of the $B(E2)_{\text{CP}}$ and $B(E2)_{\text{B-M}}$ are displayed in Table-3 and plotted in Figure-6.a as a function of N and A in comparison with the experimental values. Our results agree with the experimental results of Ref. [1] for $N = 16$ ($A = 34$), $N = 20$, ($A = 38$), $N = 26$ ($A = 44$) and $N = 30$ ($A = 48$). Other experimental values for $A = 36, 40$ and 42 are underestimated, while for $N = 28$ ($A = 46$), the experimental value of Ref. [1] is underestimated. All the experimental $B(E2)$ values are very well explained with the B-M effective charges, except for $N = 22$ ($A = 40$) and $N = 28$ ($A = 46$). The $B(E2)$ value for $N = 28$ tabulated in Ref. 1, is 196 e^2fm4, which is far away from our prediction. From this low value one would expect a persisting $N = 28$ shell gap. Recent Lifetime measurements of excited states in neutron-rich 44,46Ar [6] showed that $B(E2) = 570 (+335,-160) e^2$fm4. Our calculated value is within this measured value, which shows a systematic increase in the $B(E2)$ for $N \geq 20$. This value contradicts the enhancement of the 2^+ energy, which provides a robust evidence for the persistence of $N = 28$ shell gap. Ebata et al. [9] have tested the low-lying strengths of 46Ar and found to be less than 200 e^2fm4, which support the smaller value of $B(E2)$ reported by Coulomb excitation. However, shell model calculations predict the
breakdown of $N = 28$ as a magic number. Fair agreement is obtained between the theoretical and experimental energy levels of the 2^+ states for all Ar isotopes considered in this work, as shown in Figure-6.b. Figure-7 shows the level scheme of the 2^+_2 states of Ar isotopes. Mengoni et al. [6] showed that a slight renormalization of the B-M effective charges by 1.14 was introduced to have the results reproduce the $B(E2)$ value of semi magic 36Ar. Shell model calculations shows maximum deformation for $N = 28$ ($A = 46$) Figure-3c, which indicates a collapse of $N = 28$ shell closure, but this value contradicts the large value of $E_2(2^+)$ in comparison with those of the adjacent isotopes.

4. Conclusions

Shell model calculation is adopted to calculate E2 transition rates of even-even Si, S and Ar isotopes including core-polarization effects through microscopic perturbed calculations which incorporate one-particle-one-hole excitation from the core and the model space orbits into all higher orbits with $2\hbar\omega$ excitation. Full sd valence space is used for Z-8 protons and full pf valence space for N-20 neutrons. The proton and neutron isovector effective charges as deduced from core-polarization calculations are close to each other for all isotopes considered in this work, and the $B(E2)$ values can be described by taking the average isovector effective charges $e_\pi = 1.19e$, $e_\sigma = 0.47e$ and average isoscalar effective charges $e_\sigma = 1.33e$, $e_\pi = 0.33e$. Calculations of transition rates for Si, S and Ar isotopes provide insight into the evolution of shell structure and deformation in this region. Collective behavior is gradually developed in neutron-rich isotopes between $N = 20$ and $N = 28$, and the shell gap at $N = 28$ is eroded for Si isotope. The results show a systematic increase in the $B(E2)$ values for $20 \leq N \leq 28$. Shell model calculation of $B(E2)$ value predicts the collapse of $N = 28$ shell closure in Ar isotope, which contradicts the large value of excitation energy.

References:

Table 1 - Reduced transition probabilities in units of $e^2 \text{fm}^4$ and excitation energies for Si isotopes ($Z = 14$). Experimental E_x and $B(E2)$ are taken from Ref’s. [1, 2, 26].

<table>
<thead>
<tr>
<th>A</th>
<th>$(E_x)_{\text{theo.}}$(MeV)</th>
<th>$(E_x)_{\text{exp.}}$(MeV)</th>
<th>e_x, e_y</th>
<th>$B(E2)_{\text{CP}}$</th>
<th>ϵ_{e_x}, ϵ_{e_y}, B-M</th>
<th>$B(E2)_{\text{B-M}}$</th>
<th>$B(E2)_{\text{exp.}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>1.897</td>
<td>1.796</td>
<td>1.19, 0.48</td>
<td>207</td>
<td>1.22, 0.91</td>
<td>377</td>
<td>356±34</td>
</tr>
<tr>
<td>28</td>
<td>1.932</td>
<td>1.779</td>
<td>0.34, 0.34</td>
<td>353</td>
<td>1.18, 0.82</td>
<td>500</td>
<td>326±12</td>
</tr>
<tr>
<td>30</td>
<td>2.265</td>
<td>2.235</td>
<td>1.21, 0.46</td>
<td>207</td>
<td>1.15, 0.75</td>
<td>282</td>
<td>215±10</td>
</tr>
<tr>
<td>32</td>
<td>2.053</td>
<td>1.941</td>
<td>1.19, 0.48</td>
<td>192</td>
<td>1.12, 0.68</td>
<td>231</td>
<td>113±33</td>
</tr>
<tr>
<td>34</td>
<td>5.245</td>
<td>3.327</td>
<td>1.2, 0.46</td>
<td>138</td>
<td>1.09, 0.62</td>
<td>114</td>
<td>85±33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95±19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-19</td>
</tr>
<tr>
<td>36</td>
<td>1.723</td>
<td>1.399</td>
<td>1.11, 0.22</td>
<td>105</td>
<td>1.06, 0.57</td>
<td>200</td>
<td>190±60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>219±47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-37</td>
</tr>
<tr>
<td>38</td>
<td>1.395</td>
<td>1.084</td>
<td>1.22, 0.35</td>
<td>216</td>
<td>1.04, 0.53</td>
<td>277</td>
<td>190±70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>259±67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-46</td>
</tr>
<tr>
<td>40</td>
<td>1.217</td>
<td>0.9$^{(a)}$</td>
<td>1.23, 0.37</td>
<td>324</td>
<td>1.02, 0.48</td>
<td>350</td>
<td>309±19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-66$^{(b)}$</td>
</tr>
<tr>
<td>42</td>
<td>1.124</td>
<td>0.77$^{(a)}$</td>
<td>1.26, 0.37</td>
<td>409</td>
<td>1.01, 0.45</td>
<td>381</td>
<td>404±107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td>44</td>
<td>1.342</td>
<td></td>
<td>1.24, 0.41</td>
<td>292</td>
<td>0.99, 0.41</td>
<td>234</td>
<td></td>
</tr>
</tbody>
</table>

(a) Ref. [2]
(b) Ref. [26]
Figure 1- Calculated and measured $B(E2; 0^+ \rightarrow 2^+)$ and excitation energy of even- even Si isotopes. The experimental values are taken from Ref’s. [1, 2, 26].
Figure 2- The calculated and measured excitation energies for 2^+ states of even Si isotopes. The experimental values are taken from Ref’s. [1, 2].
Figure 3- Reduced deformation parameter $\beta_2(\varepsilon_2)$ for Si (a), S (b) and Ar (c) isotopes. Theoretical values are represented by solid line and solid circles. Experimental values deduced from Ref. [1] are represented by Dashed line and solid triangles. Experimental value deduced from Ref. [6] is represented by Solid Square.

Table 2- Reduced transition probabilities in units of $e^2 fm^4$ and excitation energies for S isotopes (Z=16). Experimental E_x and $B(E2)$ are taken from Ref. [1].

<table>
<thead>
<tr>
<th>$^A_{16}$S</th>
<th>$(E_x)_{\text{theo}}$(MeV)</th>
<th>$(E_x)_{\text{exp}}$(MeV)</th>
<th>e_x, e_ν</th>
<th>$B(E2)_{\text{CP}}$</th>
<th>e_x, e_ν</th>
<th>$B(E2)_{\text{CP}}$</th>
<th>$B(E2)_{\text{B-M}}$</th>
<th>$B(E2)_{\text{exp}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2.265</td>
<td>2.210</td>
<td>1.21, 0.46</td>
<td>251</td>
<td>1.21, 0.89</td>
<td>373</td>
<td>324±41</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.160</td>
<td>2.230</td>
<td>0.32, 0.32</td>
<td>209</td>
<td>1.18, 0.82</td>
<td>336</td>
<td>300±13</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.131</td>
<td>2.127</td>
<td>1.17, 0.49</td>
<td>161</td>
<td>1.15, 0.75</td>
<td>221</td>
<td>212±12</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3.382</td>
<td>3.290</td>
<td>1.17, 0.42</td>
<td>80</td>
<td>1.12, 0.7</td>
<td>73</td>
<td>104±28</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1.459</td>
<td>1.292</td>
<td>1.25, 0.32</td>
<td>153</td>
<td>1.1, 0.64</td>
<td>236</td>
<td>235±30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.942</td>
<td>0.900</td>
<td>1.25, 0.33</td>
<td>264</td>
<td>1.08, 0.6</td>
<td>385</td>
<td>334±36</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0.999</td>
<td>0.890</td>
<td>1.28, 0.33</td>
<td>334</td>
<td>1.06, 0.53</td>
<td>408</td>
<td>400±60</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1.171</td>
<td>1.315</td>
<td>1.27, 0.36</td>
<td>348</td>
<td>1.04, 0.51</td>
<td>369</td>
<td>310±90</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>1.183</td>
<td>1.27, 0.35</td>
<td>348</td>
<td>1.02, 0.48</td>
<td>357</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4- Calculated and measured $B(E2; 0^+ \rightarrow 2^+)$ and excitation energy of even-even S isotopes. The experimental values are taken from Ref. [1].
Figure 5- The calculated and measured excitation energies for 2^+ states of even S isotopes.
The experimental values are taken from Ref. [1].

Table 3- Reduced transition probabilities in units of $e^2 fm^4$ and excitation energies for Ar isotopes ($Z=18$). Experimental E_x and $B(E2)$ are taken from Ref’s. [1, 6, 27].

<table>
<thead>
<tr>
<th>A</th>
<th>$(E_x)_{th}$ (MeV)</th>
<th>$(E_x)_{exp}$ (MeV)</th>
<th>e_x, e_y</th>
<th>$B(E2)_{CP}$</th>
<th>$B(E2)_{B-M}$</th>
<th>$B(E2)_{exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>2.131</td>
<td>2.090</td>
<td>1.17, 0.49</td>
<td>191</td>
<td>1.21, 0.89</td>
<td>282</td>
</tr>
<tr>
<td>36</td>
<td>1.818</td>
<td>1.970</td>
<td>0.33, 0.33</td>
<td>224</td>
<td>1.18, 0.82</td>
<td>324</td>
</tr>
<tr>
<td>38</td>
<td>1.844</td>
<td>2.167</td>
<td>1.2, 0.47</td>
<td>99</td>
<td>1.15, 0.76</td>
<td>155</td>
</tr>
<tr>
<td>40</td>
<td>1.281</td>
<td>1.460</td>
<td>1.28, 0.28</td>
<td>138</td>
<td>1.13, 0.71</td>
<td>245</td>
</tr>
<tr>
<td>42</td>
<td>1.155</td>
<td>1.208</td>
<td>1.19, 0.48</td>
<td>260</td>
<td>1.11, 0.66</td>
<td>353</td>
</tr>
<tr>
<td>44</td>
<td>1.087</td>
<td>1.144</td>
<td>1.19, 0.48</td>
<td>272</td>
<td>1.09, 0.62</td>
<td>359</td>
</tr>
<tr>
<td>46</td>
<td>1.594</td>
<td>1.550</td>
<td>1.19, 0.48</td>
<td>380</td>
<td>1.07, 0.58</td>
<td>528</td>
</tr>
<tr>
<td>48</td>
<td>1.192</td>
<td>1.0b</td>
<td>1.19, 0.48</td>
<td>341</td>
<td>1.05, 0.54</td>
<td>460</td>
</tr>
</tbody>
</table>

(a) Ref. [6]
(b) Ref. [27]
Figure 6- Calculated and measured $B(E2; 0^+ \rightarrow 2^+)$ and excitation energy of even Ar isotopes. The experimental value for $A=46, N=28$ is taken from Ref. [6] and for $A=48, N=30$ are taken from Ref. [27].
The calculated and measured excitation energies for 2^+ states of even Ar isotopes. The experimental values are taken from Ref. [1].